22. A Limit Theorem for Sums of a Certain Kind of Random Variables

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo

(Comm. by Zyoiti Suetuna m.J.A., Feb. 12, 1965)
Let $X=(X, \mathscr{B}, \mu)$ be a fixed probability space, i.e. a totally finite measure space X with a measure μ such that $\mu(X)=1$. We consider a sequence of random variables

$$
\varphi_{m}^{(h)}(x) \quad(m=1,2, \cdots ; h \geqq 2)
$$

on X which are defined by the conditions:

1) Let $\rho_{1}, \rho_{2}, \cdots, \rho_{h}$ be the set of h-th roots of unity. The functions $\varphi_{p}^{(h)}(x)$ with prime-number indices p assume the values $\rho_{k}(1 \leqq k \leqq h)$ with equal probability $1 / h$ and they are (stochastically) independent.
2) For general $m \geqq 1$ the functions $\varphi_{m}^{(h)}(x)$ are completely multiplicative with respect to m, i.e.

$$
\varphi_{i j}^{(h)}(x)=\varphi_{i}^{(h)}(x) \varphi_{j}^{(h)}(x)
$$

for any positive integers i, j : in particular $\varphi_{1}^{(h)}(x)=1$ with probability 1.
Apparently, the functions $\varphi_{m}^{(h)}(x)(m=1,2, \cdots)$ are not independent.

We write

$$
s_{n}^{(h)}(x)=\sum_{m=1}^{n} \varphi_{m}^{(h)}(x) \quad(n=1,2, \cdots)
$$

Our aim in this note is to prove the following
Theorem. We have for any $\varepsilon>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{\frac{1}{2}}(\log n)^{\frac{7}{4}+\varepsilon}}=0 \tag{1}
\end{equation*}
$$

with probability 1 and for $h \geqq 3$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\boldsymbol{s}_{n}^{(h)}(x)}{n^{\frac{1}{2}}(\log n)^{\frac{3}{2}+\varepsilon}}=0 \tag{2}
\end{equation*}
$$

with probability 1.
According to P. Erdös (Some unsolved problems. Publ. Math. Inst. Hungar. Acad. Sci., vol. 6 ser. A (1961), pp. 221-254; especially, pp. 251-252), A. Wintner proved that for any $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{\frac{1}{2}+\varepsilon}}=0
$$

with probability 1, and Erdös himself has improved this result to

$$
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{\frac{1}{2}}(\log n)^{c}}=0
$$

for some constant $c>0$. We do not claim, of course, that the results stated in our theorem are the best possible of their kind. It may be conjectured that for every $h \geqq 2$ we have with probability 1

$$
\limsup _{n \rightarrow \infty} \frac{\operatorname{Res}_{n}^{(h)}(x)}{n^{1 / 2}}=+\infty .
$$

We note that the conjecture for $h=2$ is due to Erdös (cf. the above cited paper by him).

1. We have

$$
\boldsymbol{s}_{n}^{(h)}(x)=\sum_{j \leq n}^{(h)}\left[\left(\frac{n}{j}\right)^{1 / n}\right] \varphi_{j}^{(h)}(x)
$$

almost everywhere on X (i.e. with probability 1), where the summation $\Sigma^{(h)}$ is extended over h-th power-free integers only: an integer j is said to be h-th power-free if $d^{h} \mid j, d>0$, implies $d=1$. For, every positive integer m can be uniquely written in the form $m=$ $d^{h} j$ with some positive integers d, j, j being h-th power-free. Note that if $m=d^{h} j$ then $\varphi_{m}^{(h)}(x)=\varphi_{j}^{(h)}(x)$ almost everywhere on X. Also, if we denote by $\bar{\varphi}_{m}(x)$ the complex conjugate of $\varphi_{m}(x)$, then

$$
\bar{\varphi}_{m}^{(h)}(x)=\left(\varphi_{m}^{(h)}(x)\right)^{n-1}=\varphi_{n}^{(h)}(x) \quad\left(n=m^{h-1}\right)
$$

almost everywhere on X. It is easy to see that the functions $\varphi_{j}^{(h)}(x)$ with h-th power-free indices j form an orthonormal system in X.

Lemma 1. Let $0 \leqq m<n$. Then we have

$$
\begin{aligned}
& \int_{X}\left|\sum_{m<i \leq n} \varphi_{i}^{(2)}(x)\right|^{2} d \mu=O\left(\left(n^{1 / 2}-m^{1 / 2}\right)^{2} \log (m+1)\right) \\
&+O(n \log (n /(m+1)))+O(n) \quad(n>1)
\end{aligned}
$$

Proof. We have

$$
\int_{X}\left|\sum_{m<i \leq n} \varphi_{i}^{(2)}(x)\right|^{2} d \mu=\sum_{j \leq n}^{(2)}\left(\left[\left(\frac{n}{j}\right)^{1 / 2}\right]-\left[\left(\frac{m}{j}\right)^{1 / 2}\right]\right)^{2},
$$

where the sum on the right-hand side is equal to

$$
\sum_{j \leq m}^{(2)}\left(\left[\left(\frac{n}{j}\right)^{1 / 2}\right]-\left[\left(\frac{m}{j}\right)^{1 / 2}\right]\right)^{2}+\sum_{m<j \leq n}^{(2)}\left[\left(\frac{n}{j}\right)^{1 / 2}\right]^{2}=\sum_{1}+\sum_{2}, \quad \text { say. }
$$

Now

$$
\begin{aligned}
\sum_{1} & \leqq \sum_{j \leqq m}\left(\frac{n^{1 / 2}-m^{1 / 2}}{j^{1 / 2}}+1\right)^{2} \\
& =\left(n^{1 / 2}-m^{1 / 2}\right)^{2} \log (m+1)+O(n) ; \\
\sum_{2} & \leqq \sum_{m<j \leqq n} \frac{n}{j}=n \log \frac{n}{m+1}+O(n) .
\end{aligned}
$$

This proves the lemma.
Lemma 2. Suppose $h \geqq 3$ and let $0 \leqq m<n$. Then we have

$$
\int_{X}\left|\sum_{m<i \leqq n} \varphi_{i}^{(h)}(x)\right|^{2} d \mu=O(n) .
$$

Proof. The integral in the lemma equals

$$
\sum_{j \leq n}^{(h)}\left(\left[\left(\frac{n}{j}\right)^{1 / h}\right]-\left[\left(\frac{m}{j}\right)^{1 / n}\right]\right)^{2},
$$

which does not exceed trivially

$$
\sum_{j \leq n} \frac{n^{2 / h}}{j^{2 / h}}=n^{2 / h} \frac{n^{1-(2 / h)}}{1-(2 / h)}+O\left(n^{2 / h}\right)=O(n) .
$$

We denote by $L^{2}(X)$, as usual, the class of measurable functions $f(x)$ defined on X such that $|f(x)|^{2}$ is integrable over X. Also, $\bar{f}(x)$ denotes the function conjugate to $f(x)$: thus, $f(x) \bar{f}(x)=|f(x)|^{2}$.

Lemma 3. Let $f_{i}(x)(i=1,2, \cdots)$ be a sequence of real or complex valued functions belonging to the class $L^{2}(X)$ and satisfying the condition

$$
\operatorname{Re} \int_{x} f_{i}(x) \bar{f}_{j}(x) d \mu \geqq 0
$$

for any indices $i \neq j$. Then if we define

$$
F_{n}(x)=\sup _{1 \leqq m \leqq n}\left|\sum_{i=1}^{m} f_{i}(x)\right|
$$

we have

$$
\int_{X} F_{n}^{2}(x) d \mu \leqq A \log ^{2} n \cdot \int_{X}\left|\sum_{i=1}^{n} f_{i}(x)\right|^{2} d \mu \quad(n>1)
$$

with some absolute constant $A>0$.
Proof. Let $2^{r-1}<n \leqq 2^{r}(r \geqq 1)$. We put $c_{i}=1$ for $1 \leqq i \leqq n,=0$ for $n+1 \leqq i \leqq 2^{r}$, and write for $l, 0 \leqq l \leqq r$,

$$
\begin{aligned}
F_{k, l}(x) & =\left|\sum_{i=(k-1) 2 r-l_{l+1}}^{k_{2} r-l} c_{i} f_{i}(x)\right| \quad\left(1 \leqq k \leqq 2^{l}\right) \\
M_{l}(x) & =\sup _{1 \leqq k \leq 2 l} F_{k, l}(x)
\end{aligned}
$$

Considering the dyadic development of an integer $m, 1 \leqq m \leqq n$, we easily find that

$$
F_{n}(x) \leqq \sum_{l=0}^{r} M_{l}(x),
$$

and therefore

$$
\int_{X} F_{n}^{2}(x) d \mu \leqq(r+1) \sum_{l=0}^{r} \int_{X} M_{l}^{2}(x) d \mu,
$$

where

$$
\begin{aligned}
\int_{X} M_{l}^{2}(x) d \mu & \leqq \sum_{k=1}^{2 l} \int_{X} F_{k, l}^{2}(x) d \mu \\
& \leqq \int_{X}\left|\sum_{i=1}^{n} f_{i}(x)\right|^{2} d \mu
\end{aligned}
$$

Hence

$$
\int_{X} F_{n}^{2}(x) d \mu \leqq(r+1)^{2} \int_{X}\left|\sum_{1}^{n} f_{i}(x)\right|^{2} d \mu
$$

Since $(r+1)^{2} \leqq(3 / \log 2)^{2} \log ^{2} n(n \geqq 2)$, our lemma is proved.
2. We are now ready to prove the theorem. First we shall demonstrate the assertion (1).

Lemma 4. Put $n_{k}=\left[\exp k^{\infty}\right](k=1,2, \cdots)$, where $\alpha, 0<\alpha<1$, is a constant. Then if $c>(1+\alpha) /(2 \alpha)$ we have

$$
\lim _{k \rightarrow \infty} \frac{s_{n_{k}}^{(2)}(x)}{n_{l_{k}}^{1 / 2}\left(\log n_{k}\right)^{c}}=0
$$

almost everywhere on X.
Proof. By Lemma 1 we have

$$
\int_{X}\left|s_{n_{k}}^{(2)}(x)\right|^{2} d \mu=O\left(n_{k} \log n_{k}\right),
$$

so that

$$
\int_{X}\left(\frac{s_{n_{k}}^{(2)}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{c}}\right)^{2} d \mu=O\left(\left(\log n_{k}\right)^{1-2 c}\right)=O\left(k^{\alpha(1-2 c)}\right)
$$

where, by assumption, $\alpha(1-2 c)<-1$. Hence

$$
\sum_{k=1}^{\infty} \int_{X}\left(\frac{s_{n_{k}}^{(2)}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{c}}\right)^{2} d \mu<\infty
$$

and the series

$$
\sum_{k=1}^{\infty}\left(\frac{s_{n_{k}}^{(2)}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{c}}\right)^{2}
$$

converges almost everywhere on X. The result follows from this at once.

Let $h=2$ and put again

$$
n_{k}=\left[\exp k^{\alpha}\right] \quad(k=1,2, \cdots),
$$

where $\alpha, 0<\alpha<1$, will be determined in a moment later. Define

$$
G_{k}(x)=\sup _{n_{k}<n \leq n_{k+1}}\left|s_{n}^{(2)}(x)-s_{n_{k}}^{(2)}(x)\right| \quad(k=1,2, \cdots) .
$$

Since we have $\int \begin{gathered}n_{k}<n \leq n_{k+1} \\ \eta_{i}^{2}(x)\end{gathered} \varphi_{j}^{2(1)}(x) d \mu \geqq 0$ for any indices i, j, Lemma 3 is applicable to $G_{k}(x)$.

We see that $n_{k+1}-n_{k}=O\left(k^{\alpha-1} n_{k}\right)=O\left(n_{k}\right),\left(n_{k+1}^{1 / 2}-n_{k}^{1 / 2}\right)^{2}=O\left(k^{2 \alpha-2} n_{k}\right)$, so that by Lemma 1 ,

$$
\left.\left.\int_{X}\right|_{n_{k}<i \leq n_{k+1}} \varphi_{i}^{(2)}(x)\right|^{2} d \mu=O\left(k^{2 \alpha-2} n_{k} \log n_{k}\right)+O\left(n_{k}\right) .
$$

It now follows from Lemma 3 that

$$
\int_{X} G_{k}^{2}(x) d \mu=O\left(k^{2 \alpha-2} n_{k} \log ^{3} n_{k}\right)+O\left(n_{k} \log ^{2} n_{k}\right)
$$

Hence if $c>0$ is a constant then

$$
\int_{x}\left(\frac{G_{k}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{c}}\right)^{2} d \mu=O\left(k^{(5-2 c) \alpha-2}\right)+O\left(k^{(2-2 c) \alpha}\right),
$$

since $\log n_{k}=k^{\alpha}+o(1)$. Choose $\alpha=2 / 3$ and suppose $c>7 / 4$. Then $(5-2 c) \alpha-2=(2-2 c) \alpha<-1$, and we have

$$
\sum_{k=1}^{\infty} \int_{X}\left(\frac{G_{k}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{c}}\right)^{2} d \mu<\infty,
$$

from which we deduce, as in the proof of Lemma 4, that

$$
\lim _{k \rightarrow \infty} \frac{G_{k}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{2}}=0
$$

almost everywhere on X. Applying Lemma 4 with $\alpha=2 / 3$, we thus conclude finally that

$$
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{1 / 2}(\log n)^{c}}=0
$$

almost everywhere on X, provided that $c>7 / 4$. This proves (1).
The proof of (2) is similar to that of (1), but the argument is somewhat simpler.

Lemma 5. Suppose $h \geqq 3$ and put $n_{k}=\left[e^{k}\right](k=1,2, \cdots)$. Then if $c>1 / 2$ we have

$$
\lim _{k \rightarrow \infty} \frac{s_{s_{n}^{(h)}(x)}^{n_{k}^{1 / 2}\left(\log n_{k}\right)^{a}}}{=0}
$$

almost everywhere on X.
Proof. The result follows easily from Lemma 2.
Now define for $k=1,2, \cdots$

$$
H_{k}(x)=\sup _{n_{k}<n n_{n_{k}+1}}\left|s_{n}^{(k)}(x)-s_{n_{k}}^{(h)}(x)\right|,
$$

where $n_{k}=\left[e^{k}\right]$. It is clear that Lemma 3 is also applicable to $H_{k}(x)$. By Lemmas 2 and 3 we obtain

$$
\int_{X} H_{k}^{2}(x) d \mu=O\left(n_{k} \log ^{2} n_{k}\right),
$$

and therefore, if $c>0$ is a constant then

$$
\int_{X}\left(\frac{H_{k}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{\circ}}\right)^{2} d \mu=O\left(k^{2-2 c}\right) .
$$

Thus, arguing just as before, we find that

$$
\lim _{k \rightarrow \infty} \frac{H_{k}(x)}{n_{k}^{1 / 2}\left(\log n_{k}\right)^{2}}=0
$$

almost everywhere on X, if $c>3 / 2$. This together with Lemma 5 implies (2).

Our proof of the theorem is now complete.
Remark. It will be clear from the proof that the denominators in the left-hand side of (1) and (2) may be replaced respectively by $n^{\frac{z}{2}}(\log n)^{\frac{1}{4}}(\log \log n)^{\frac{1}{2}+e}$
and

$$
n^{\frac{1}{2}}(\log n)^{\frac{3}{2}}(\log \log n)^{\frac{1}{2}+\varepsilon}
$$

for any $\varepsilon>0$, without affecting the results.

