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Introduction. Let M be a connected Riemannian manifold of
dimension 7 and of class C=, and let M, be the tangent space of M
at p. According to the Riemannian structure a scalar product
g,(X, Y) is defined for any vectors X, Ye M,. We denote by L,
the group of all linear transformations of M,. The infinitesimal
linear isotropy group K, is, by definition [2], the subgroup of L,
consisting of all linear transformations of M, which leave invariant
the curvature tensor R and the successive covariant differentials VR,
V2R, -+« at p. We define a group A, as a subgroup of K, consisting
of all elements of K, which leave invariant the scalar product
0,(X, Y). Let I{M) be the group of isometries of M. Let H, be
the isotropy group of I(M) at p, and let dH, be the linear isotropy
group of H,. In §1, we shall investigate sufficient conditions that
dH,= A,. §2 is devoted to applications of the main theorem to
Riemannian globally symmetric spaces.

§1. Main theorem.

Theorem 1. If M is a simply connected homogeneous Rieman-
nian manifold, then dH, = A, for each p in M.

In order to prove this theorem, we need the following;

Lemma. If M is an analytic complete simply connected
Riemannian manifold, then dH, = A, for each p in M.

Proof. We have proved that dH, C A, for any Riemannian
manifold [3] p. 1). Take a normal coordinate system {x,, ---, x,} at
p, with coordinate neighborhood U. We may assume that {(8/6x,),,
«e«, (0/02,),} is an orthonormal base, and that U is the interior of
a gedesic sphere centered at p. U has the Riemannian metric
induced from M. Since M is analytic, each element a € A, induces
a local isometry 7 which maps U onto itself, such that f{p) = p and
(df), = @ ([3] p. 2). Since M is a simply connected complete analytic
Riemannian manifold, and U is a connected open subset of M, this
local isometry f can be uniquely extended to f, an isometry of
M ([4] p. 256). Clearly f(p) = p and (df), = a. Therefore we have
A, C dH,.

Proof of Theorem. Since M is a Riemannian homogeneous
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space of a Lie group, it can be considered to be an analytic complete
Riemannian manifold. Since M is simply connected it satisfies the
conditions of the lemma.

Counterexample. Consider in E°® a cylinder of revolution
with the natural Riemannian metric from Euclidean metric in M.
This is a homogeneous Riemannian manifold, which is not simply
connected. In this case, dH, = identity and A, is the rotation group
of E*®. This example shows that the simply connectedness of the
theorem can not be removed.

Corollary. If M is an analytic complete simply connected
Riemannian manifold, then H, is isomorphic to dH, as Lie groups.

Proof. Let U be the neighborhood with the same Riemannian
structure as in above lemma. Let H, be the group of all isometries
of U which fix the point p. Then each element fe H, induces f, €
H,. Since M is a simply connected analytic complete Riemannian
manifold, each fe H, can be extended uniquely to f, an isometry of
M. Clearly f, = 7. Therefore H, is isomorphic to H, as Lie groups.
Each element of A, can be expressed by a matrix with respect to
the base {(0/0x,),, -+, (8/0x,),}. In this coordinate system {x,, - - -, x,}
each element of H, can be expressed by

yizglaijxj(i: 1’ 2’ "’,’I’I/) ’
where the matrix |Ia,-,~||]belongs to A,([3] p. 3). This means that
H, is isomorphic to A, as Lie groups. But A, = dH,. Therefore
H, is isomorphic to dH,, and this isomorphism is given by the cor-
respondence fe H,— (df),€ dH,.

§2. Applications.

In 1927, E. Cartan proved the following theorem ([1] p. 84).

Let M be an affine locally symmetric space without torsion.
If a linear tramsformation of M, leaves imvariant the curvature
tensor R at p, then this induces a local affine tsomorphism on M.

We shall treat this problem globally imposing some conditions
on M.

Theorem 2. If M is a simply connected Riemannian globally
symmetric space, then dH, = A,.

Proof. M is a simply connected homogeneous Riemannian
manifold. Since M is locally symmetrie, the tensors V¥R vanish for
E=1,2 -..,. By Theorem 1 the conclusion follows.

A Riemannian globally symmetric space M is said to be of the
non-compact type, if the Riemannian symmetric pair (G, K) is of
the noncompact type ([5] p. 194), where G is the identity component
of I(M) and K is the isotropy group of G at some point in M. Let
us fix a point p and let A the space of A,.
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Theorem 3. If M is a Riemanntan globally symmetric space
of the nmoncompact type, then the space of I(M) is diffeomorphic to
E" x A.

Proof, For a Riemannian symmetric space of the noncompact
type M, there is a normal coordinate system whose coordinate
neighborhood is M([5] p. 215). This means that M is diffeomorphic
to E*. Let O0(M) be the bundle of orthonormal frames over M,
and let F’ be an orthonormal frame at p. For each ¢qe€ M(q = p)
we put f, = 7,F where 7, is the parallel translation along the
unique geodesic segment from p to q. Therefore we get a C* cross-
section in the principal bundle 0(M), so that this bundle is equivalent
to a product bundle. Each member of I(M) induces a diffeomorphism
on O(M) in the natural way. Then the set of frames I(M)F can
be considered as a reduced bundle of 0(M). Clearly the bundle
I(M)F is equivalent to a product bundle. In this bundle, the base
space is diffeomorphic to E", and the standard fiber is diffeomorphic
to A.

Corollary. If M is a Riemannian globally symmetric space
of the mon-compact type, then dH, = A,.

Proof. Since M is simply connected, by Theorem 2 the conclu-
sion follows.
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