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Introduction. Let M be a connected Riemannian manifold of
dimension n and of class C,. and let M be the tangent space oi M
at p. According to the Riemannian structure a scalar product
g(X, Y) is defined for any vectors X, Y e M. We denote by L
the group of all linear transformations of M. The infinitesimal
linear isotropy group K is, by definition E2], the subgroup of L
consisting of all linear transformations of M which leave invariant
the curvature tensor R and the successive covariant differentials VR,
WR, at p. We define a group A as a subgroup of K consisting
of all elements of K which leave invariant the scalar product
g(X, Y). Let I(M) be the group of isometrics of M. Let H be
the isotropy group of I(M) at p, and let dH be the linear isotropy
-group of H. In 1, we shall investigate sufficient conditions that
dH- A. 2 is devoted to applications of the main theorem to
Riemannian globally symmetric spaces.

1. Main theorem.
Theorem 1. If M is a simply connected homogeneous Rieman-

nian manifold, then dH- A for each p in M.
In order to prove this theorem, we need the iollowing"
Lemma. If M is an analytic complete simply connected

Riemannian manifold, then dH- A for each p in M.
Proof. We have proved that dH A for any Riemannian

manifold [3_ p. 1). Take a normal coordinate system {x, ..., x} at
p, with coordinate neighborhood U. We may assume that {(O/Ox),.., (O/Ox)} is an orthonormal base, and that U is the interior of
a gedesic sphere centered at p. U has the Riemannian metric
induced from M. Since M is analytic, each element a e A induces
a local isometry ] which maps U onto itself, such that 97(p)-p and
(df) a ([3 p. 2). Since M is a simply connected complete analytic
Riemannian manifold, and U is a connected open subset of M, this
local isometry f can be uniquely extended to f, an isometry of
M([4 p. 256). Clearly f(p) p and (df) a. Therefore we have
A dH.

Proof of Theorem. Since M is a Riemannian homogeneous
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space of a Lie group, it can be considered to be an analytic complete
Riemannian manifold. Since M is simply connected it satisfies the
conditions of the lemma.

Counterexample. Consider in E a cylinder of revolution
with the natural Riemannian metric from Euclidean metric in M.
This is a homogeneous Riemannian manifold, which is not simply
connected. In this case, dH- identity and A is the rotation group
of E. This example shows that the simply connectedness of the
theorem can not be removed.

Corollary. If M is an analytic complete simply connected
Riemannian manifold, then H is isomorphic to dH as Lie groups.

Proof. Let U be the neighborhood with the same Riemannian
structure as in above lemma. Let H be the group of all isometries
of U which fix the point p. Then each element f e H induces f e
/. Since M is a simply connected analytic complete Riemanniaa
manifold, each ]e/ can be extended uniquely to f, an isometry of
M. Clearly f, f. Therefore H is isomorphic to H as Lie groups.
Each element of A can be expressed by a matrix with respect to
the base {(0/0x), .-., (8/8x)}. In this coordinate system {x, -.-, x}
each element of H can be expressed by

y , ax(i 1, 2, ..., n)
where the matrix Ilalt belongs to A(_3 p. 3). This means that.
/ is isomorphic to A as Lie groups. But A- dH. Therefore

H is isomorphic to dH, and this isomorphism is given by the cor-.
respondence f H (df) dH.

2. Applications.
In 1927, E. Caftan proved the following theorem ([1 p. 84).
Let M be an ane locally symmetric space without torsion.

If a linear transformation of M leaves invariant the curvature
tensor R at p, then this induces a local ajne isomorphism on M.

We shall treat this problem globally imposing some conditions
on M,

Theorem 2. If M is a simply connected Riemannian globally
symmetric space, then dH- A.

Proof. M is a simply connected homogeneous Riemannian
manifold. Since M is locally symmetric, the tensors VR vanish for
k- 1, 2,.-.,. By Theorem 1 the conclusion follows.

A Riemannian globally symmetric space M is said to be of the
non-compact type, if the Riemannian symmetric pair (G, K) is of
the noncompact type ([5 p. 194), where G is the identity component
of I(M) and K is the isotropy group of G at some point in M. Let
us fix a point p and let A the space of A.
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Theorem 3. If M is a Riemannian globally symmetric space
of the noncompact type, then the space of I(M) is diffeomorphic to
E’A.

Proof. For a Riemannian symmetric space of the noncompact
type M, there is a normal coordinate system whose coordinate
neighborhood is M([5 p. 215). This means that M is diffeomorphic
to E". Let 0(M) be the bundle of orthonormal frames over M,
and let F be an orthonormal frame at p. For each qeM(q p)
we put fq--vqr where Vq is the parallel translation along the
unique geodesic segment from p to q. Therefore we get a C cross-
section in the principal bundle 0(M), so that this bundle is equivalent
to a product bundle. Each member of I(M) induces a diffeomorphism
on 0(M) in the natural way. Then the set of frames I(M)F can
be considered as a reduced bundle of 0(M). Clearly the bundle
I(M)F is equivalent to a product bundle. In this bundle, the base
space is diffeomorphic to E", and the standard fiber is diffeomorphic
to A.

Corollary. If M is a Riemannian globally symmetric space
of the non-compact type, then dH-

Proot. Since M is simply connected, by Theorem 2 the conclu-
sion follows.
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