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1. Introduction. Choquet and Deny [1, 2] proved the follow-
ing theorem: A strictly positive continuous kernel V: C—C satisfies
the balayage principle if and only if it satisfies the domination prin-
ciple. (For the notations and the definitions see Section 2.) In the
present note we show that a continuous kernel V: C—C satisfies the
balayage principle on any open set if and only if it satisfies the
domination principle under the assumption that V(C) is dense in C.
In Section 4 we show that if a continuous kernel V:C—C satisfies
the two conditions, the denseness of V(C) in C and the complete
maximum principle, then it is a continuous kernel of Hunt.

2. Notations and definitions. Let X be a locally compact
Hausdorff space, and B denote the Borel field on X. Let C = C(X)
be the totality of bounded continuous real valued functions on X.
C is a real Banach space with the norm || f ||=51e1£> | f(x)]. Let Cx=

Cx(X) be the totality of continuous real valued functions on X with
compact support. Let M=M(X) and M,=M(X) be the totalities
of real Radon measures on X and of those with compact support,
respectively. We denote by C+*, .-. the subsets of the above sets.
consisting of positive elements.

Definition 1. A mapping V of XX B into [0, + ] is called a
kermel on X, if it has the following properties: For any x e X, the
set function V(x, ¢) of ¢ is a positive Radon measure on X, and for
any relatively compact e B, the function V(x,¢) of = is a locally
bounded Borel function.

Given a positive Borel function f, its potential Vf(x) is defined
by

V@)= fw) Vis, .

Given a positive Radon measure g, its potential pV{(e) is defined
by

p V(e)=S Ve, e)du()

provided that p#V is a positive Radon measure.
We shall say that a kernel V is continuous if it is a positive
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linear mapping of C into C.” We consider only such a kernel in
this note.

Definition 2. (Complete maximum principle on Ci) For any
S, 9e€C% and for any non-negative real number @, an inequality

Vi) = Vg(x)+a
on S;, the support of f, implies the same inequality in the whole
space.

The complete maximum principle on C* is similarly defined.

In case @ = 0 the complete maximum principle is called the
domination principle.

Definition 3. (Balayage principle) For any relatively compact
open set w in X and for any pe Mg, there is a positive measure v
supported by @, the closure of ®, such that

1) vV=pV in X,

(2) the restrictions of vV and ¢V to w are identical.

Replacing “any relatively compact open set” by “any open set”
we have the balayage principle on any open set.

Given a positive linear mapping V:C—C, the balayage principle
with respect to the dual mapping V* of V is similarly defined.

3. Balayage principle on any open set. In order to prove
the theorems below we need the following

Lemma, Assume that a continuous kernel V is strictly posi-
tive. Then the complete maximum principle (the domination
principle, resp.) on Ci tmplies the complete maximum principle
(the domination principle, resp.) on C*.

Proof. Suppose that for f, ge C+ and for a=0,

Vi(x) < Vg(x)+a on S;.
There exist a directed set I={¢} and monotone increasing nets {f.}.e;
and {g.}.e; of functions in C} such that sup S(x)=s(x) and sup g9.(x)=

g(x) at any x€ X. Then {Vf.}.e; and {Vg }er are the monotone in-
creasing nets, and at any xz¢ X, sup Vf.(x)=Vf(z) and sup Vg.(x)=
I I

Vg(x). Now let ¢ be arbitrarily fixed in I. By the strict positivity
of V there exists he Ct such that Vi(z)=1 on S;. For any ¢>0,
there exists £ € I such that

V(@) Vgx)+eVh(x)+a on Sy.
By the complete maximum principle on Cj, the same inequality is
valid everywhere. Hence we have

Vi(z) = Vg(x)+a everywhere,

and hence

1) Deny [2] says that V is continuous when it transforms Cx into C.
2) It means that for any z € X, there is a function f in C such that Vf(x)>0.
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Vix) < Vo(x)+a everywhere.
This completes the proof.

Theorem 1. Assume that the image V(C) of C by a continuous
kernel V is dense in C. For V to satisfy the balayage principle
on any open set, it is mecessary and sufficient that V satisfies the
domination principle on Ck.

Proof. Necessity is evident (Deny [2]). We shall show that
the domination principle on Cf implies the balayage principle on any
open set. To begin with we shall denote by X the Cech compactifica-
tion of X ([5], p. 276), and denote by f the unique continuous ex-
tension of f to X. We define a positive linear mapping of C=C(X)
into C, denoted by V, as follows:

~  ~ N ~ o~
V(f)=V(S) for any feC.
Then V/(C) is dense in C. Furthermore the denseness of V(C) in C
implies that V is strictly positive. On the other hand, by the above
lemma V satisfies the domination principle on C*+ and hence V satisfies
the domination principle on C+(=C#(X)). Denoting by M+(=Mx(X))
the totality of positive Radon measures on X, we have
V@, F>=<@, Vi> for any fie If* and for any feC,

where V*@ is the image of Z by the dual mapping V* of V and
<2, g> denotes the i-integral of g. By Choquet-Deny’s theorem [1],
V* satisfies the balayage principle. Now let ¢ be a measure in Mz
and @ be an open set in X, Put 5

f, o=, f>  for any feC.
Then [ is a measure in M*, and there exists a balayaged measure
Y of £ to the open set w.® We shall show that a positive measure
v on X, defined by

v, fr=<{,f>  for any feC,
is a required balayaged measure. First let f be a function in Cy
whose support is disjoint from @. Then the support of f is disjoint
from the closure of  in X. Hence

<v’ f>:<g’ f>:0’

and v is supported by @. On the other hand, vV is a positive Radon
measure and

OV, o=, V) for any fe Ckg.
Consequently for any fe Cg we have

WV, fy=, V=<, V=<, TiH=<7*3, 7>
<<V, Fo=<@, TF>=<a, Viy=Lu, VI>={uV, f>.

Hence vyV=pV. Similarly we obtain

3) Being open in X, » is open in X
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QV, 5=LuV, >,
for any fe Cy such that S;is contained in w, and hence the restric-
tions of vV and ¢V to w are identical. This completes the proof.
Remark 1. It is an open question if the condition, the denseness
of V(C) in C, can be replaced by a weaker condition.
Remark 2. Let 2 be a bounded domain of the n(=2)-dimensional
BEuclidean space and G(x,y) be the Green function of 2. Then the

Green kernel V(zx, e)=§ G(x, y)dy satisfies the conditions of Theorem

1, and hence it satisfies the balayage principle on any open set.

4. Continuous kernel of Hunt, In this section we prove
the following

Theorem 2. If a continuous kernel V has the two properties:

(@) V(C) is dense in C,

(B) V satisfies the complete maximum principle on Ck,
then there exists uniquely a family {P},., of positive linear opera-
tors of C into C such that

(1) {P}izo is @ semi-group,

(i) [[P]l=1  for any t=0,

@iii) || P.f—f||—0 as t—+0, Jor any feC,

(iv) Vf:S”Ptfdt for any feC.

Proof. Sinolilarly as in the proof of Theorem 1, we have

(@ V(C) is dense in C,

(8) V satisfies the complete maximum principle on C-.

Hence by Hunt’s theorem (Lion [4]), there is a family {P,},s, of
positive linear operators of C into C such that

(1) {P},s, is a semi-group,

(i) [|B,||=1  for any t=0,

(i) || P.f—Fl—0 as t—+0, for any feC,

(iv) szrﬁtfdt for any feC.

For any feC a:ld for any t=0, put

P,f=the restriction of P,f to X.
Then we can see immediately that {P,},., satisfies (i), (ii), (iii), and
(iv). For the uniqueness of the semi-group we refer to Deny [2].
This completes the proof.

Remark 3. Hunt’s theorem is stated for the continuous kernels
which transform Cjy into C,, where C, denotes the totality of con-
tinuous functions on X vanishing at infinity. Consequently his
theorem says nothing about the Green kernel (defined in Remark 2)

4) If there is such a semi-group, V is called a continuous kernel of Hunt
(Deny [3D).
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on 2 whose boundary has irregular points, since Vf¢C, even if
feCg. But it is a continuous kernel of Hunt by Theorem 2.
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