123. Non-negative Integer Valued Functions on Commutative Groups. I

By R. Biggs, Morio Sasaki, and Takayuki Tamura
University of British Columbia, Iwate University and University of California, Davis
(Comm. by Kinjirô Kunugı, m.J.A., Sept. 13, 1965)

T. Tamura, one of the authors, introduced "an indexed group" which means a commutative group G with a non-negative integer valued function $I(x, y)$ defined on $G \times G$ and satisfying the following conditions:
(A) $I(x, y)=I(y, x)$
(B) $I(x, y)+I(x y, z)=I(x, y z)+I(y, z)$ for any $x, y, z \in G$
(C) For any $x \in G$, there is a positive integer m (depending on $x)$ such that $I\left(x^{m}, x\right)>0$.
(D) $I(e, e)=1$ where e is the identity of G.

It was shown in [1] that $I(e, x)=1$ for all $x \in G$ for every indexed group G. Consequently if G is periodic, condition (C) is satisfied whenever conditions (A), (B), and (D) are satisfied.

Given an indexed group G, there is a commutative archimedean cancellative semigroup without idempotent such that the fundamental group of which is isomorphic to the group G (Theorem 4 in [1] or Exercise §4.3, 8. p. 136 in [2]).

The purpose of this paper, as one of the series, is to show how all I-functions on a finitely generated commutative group G may be obtained.

1. The Case where \boldsymbol{G} is a Finite Cyclic Group. Suppose G is a cyclic group of order n generated by a. Let $E(i, j, k)$ denote the equation obtained by setting x, y, z as a^{i}, a^{j}, a^{k} respectively in (B), and let $E^{\prime}(i, j, k)$ be the equation obtained by exchanging the two sides of $E(i, j, k)$ with each other.

Lemma 1. $E(m, p, q), m>0, p, q$ integers, is expressed by equations of type $E(1, p, q)$.

Proof. If $m=1$, it is obvious. Let $m \geqq 2$, then $E(m, p, q)$ is obtained by adding $E(m-1,1, p), E^{\prime}(m-1,1, p+q), E(m-1, p+1, q)$ and $E(1, p, q)$. By induction we get this lemma.

For integers $i(\geqq 0), m, n$ we define

$$
\begin{aligned}
{[m, n]_{i} } & =\sum_{k=0}^{i-1} I\left(a, a^{m+k}\right)-\sum_{k=0}^{i-1} I\left(a, a^{n-k}\right), & & \text { if } i>0 \\
& =0 & & \text { if } i=0
\end{aligned}
$$

Adding then, $E(1,1, j), E(1,2, j), \cdots, E(1, i-1, j)$, we obtain

Lemm 2.

$$
I\left(a^{i}, a^{j}\right)=I\left(a, a^{i+j-1}\right)+[j, i-1]_{i-1} \quad \text { for } \quad i \geqq 1 .
$$

Conversely if $I\left(a, a^{k}\right)$, for all k, are given and if $I\left(a^{i}, a^{j}\right)$ is defined in this manner, we can easily prove that the function I satisfies (B).

Theorem 1. If G is a cyclic group of order n, the function values $I\left(a, a^{k}\right), k=1, \cdots, n-1$, are independent up to relative size considerations and every other function value can be determined from these $n-1$ values by the form in Lemma 2.

Next we shall consider determining the relative sizes of the "independent" elements $I\left(a, a^{k}\right), k=1, \cdots, n-1$. The major conditions are $I\left(a^{i}, a^{j}\right) \geqq 0$ for all $i, j=1, \cdots, n-1$. We note that

$$
0 \leqq I(a, a) \leqq I\left(a, a^{2}\right) \leqq \cdots \leqq I\left(a, a^{n-1}\right)
$$

is sufficient for a solution. In fact, in this case, it follows that for $2 \leqq i \leqq j \leqq n-1$.
(1.1) if $i+j-1 \leqq n$, then

$$
I\left(a^{i}, a^{j}\right)=I\left(a, a^{i+j-1}\right)+\sum_{k=0}^{i-2}\left(I\left(a, a^{j+k}\right)-I\left(a, a^{1+k}\right)\right) \geqq 0
$$

since $n>j+k>1+k$ for all k with $0 \leqq k \leqq i-2$.
(1.2) if $i+j-1>n$, then we can put $i+j-1=n+s, 1 \leqq s \leqq n-3$ and

$$
\begin{aligned}
I\left(a^{i}, a^{j}\right) & =\left(\sum_{k=j}^{n} I\left(a, a^{k}\right)+\sum_{k=n+1}^{i+j-1} I\left(a, a^{k}\right)\right)-\left(\sum_{k=1}^{s} I\left(a, a^{k}\right)+\sum_{k=s+1}^{i-1} I\left(a, a^{k}\right)\right) \\
& =I\left(a, a^{n}\right)+\sum_{k=0}^{n-j-1}\left(I\left(a, a^{j+k}\right)-I\left(a, a^{s+1+k}\right)\right) \geqq 1
\end{aligned}
$$

since $n>j+k>s+1+k$ for all k with $0 \leqq k \leqq n-j-1$.
If $n \leqq 4$, then the following conditions for $I\left(a, a^{k}\right), k=1, \cdots, n-1$, are obtained easily:
(2.1) the case $n=2, I(a, a) \geqq 0$
(2.2) the case $n=3, I(a, a) \geqq 0, I\left(a, a^{2}\right) \geqq \max \{0, I(a, a)-1\}$.
(2.3) the case $n=4, I(a, a) \geqq 0, I\left(a, a^{2}\right) \geqq 0$

$$
I\left(a, a^{3}\right) \geqq \max \left\{0, I(a, a)-I\left(a, a^{2}\right), I(a, a)-1, I\left(a, a^{2}\right)-1\right\} .
$$

So, hereafter, we assume $n \geqq 5$. By (A) we may consider the conditions for $I\left(a, a^{k}\right), k=1, \cdots, n-1$ under $I\left(a^{i}, a^{j}\right) \geqq 0$ for all i, j such that $2 \leqq i \leqq j \leqq n-1$. From Lemma 2 and $I\left(a^{i}, a^{j}\right) \geqq 0$, we get an inequality
(3) $I\left(a, a^{i+j-1}\right) \geqq[1, i+j-2]_{i-1}$.

Putting here $i+j-1=k, k$ runs through $3,4, \cdots, 2 n-3$ and for a fixed k such that $3 \leqq k \leqq 2 n-3$ all the inequalities (3) are given as follows:
(4.1) the case $3 \leqq k \leqq n-1$

$$
I\left(a, a^{k}\right) \geqq[1, k-1]_{i-1}, \quad i=2,3, \cdots,\left[\frac{k+1}{2}\right]
$$

(4.2) the case $k=n$

$$
I\left(a, a^{n}\right) \geqq[1, n-1]_{i-1}, i=2,3, \cdots,\left[\frac{n+1}{2}\right]
$$

hence

$$
I\left(a, a^{n-1}\right) \geqq[1, n-2]_{i-2}+I\left(a, a^{i-1}\right)-1
$$

for all i with $2 \leqq i \leqq\left[\frac{n+1}{2}\right]$
hence
(4.3) the case $k=n+s, 1 \leqq s \leqq n-5, n>5$

$$
I\left(a, a^{n+s}\right) \geqq[1, n+s-1]_{i-1}, \quad i=s+2, s+3, \cdots,\left[\frac{n+s+1}{2}\right]
$$

hence

$$
I\left(a, a^{n-1}\right) \geqq[s+1, n-2]_{i-s-2}+I\left(a, a^{i-1}\right)-1
$$

for all i with $s+2 \leqq i \leqq\left[\frac{n+s+1}{2}\right]$.
(4.4) the case $k=2 n-4$

$$
I\left(a, a^{2 n-4}\right) \geqq[1,2 n-5]_{i-1}, i=n-2,
$$

hence

$$
I\left(a, a^{n-1}\right) \geqq I\left(a, a^{n-3}\right)-1
$$

(4.5) the case $k=2 n-3$

$$
I\left(a, a^{2 n-3}\right) \geqq[1,2 n-4]_{i-1}, i=n-1
$$

hence

$$
I\left(a, \alpha^{n-1}\right) \geqq I\left(\alpha, \alpha^{n-2}\right)-1
$$

Summarizing the above inequalities and $I\left(a, a^{k}\right) \geqq 0$, we have the following theorem.

Theorem 2. Let G be a cyclic group of order n. $I\left(\alpha^{i}, \alpha^{j}\right) \geqq 0$ for all non-zero integers i, j if and only if $I\left(\alpha, a^{k}\right), k=1, \cdots, n-1$, satisfy the following conditions:
(5.1) In the cases $n=2,3,4,(2.1),(2.2),(2.3)$ hold respectively.
(5.2) In the case $n \geqq 5$,

$$
I\left(a, a^{k}\right) \geqq \bar{m}(k) k=1,2, \cdots, n-2
$$

$I\left(a, a^{n-1}\right) \geqq \max \left\{\bar{m}(n-1), \bar{m}^{\prime}(0), \bar{m}^{\prime}(1), \cdots, \bar{m}^{\prime}(n-5) \max _{1 \leqq i \leq n-2}\left\{I\left(a, a^{i}\right)-1\right\}\right\}$ where

$$
\bar{m}(k)=\max _{0 \leq i \leq\left[\frac{k-1}{2}\right]}\left\{[1, k-1]_{i}\right\},
$$

and

$$
\bar{m}^{\prime}(k)=\max _{1 \leq i \leq\left[\frac{n-k-3}{2}\right]}\left\{[k+1, n-2]_{i}+I\left(a, a^{i+k+1}\right)-1\right\} .
$$

We notice that the types of $I\left(a, a^{s}\right)$ which appear in $\bar{m}(k)$ are all $s<k$, and the types of $I\left(a, a^{s}\right)$ in

$$
\max \left\{\bar{m}(n-1), \bar{m}^{\prime}(0), \cdots, \bar{m}^{\prime}(n-5), \max _{1 \leqq i \leqq n-2}\left\{I\left(a, a^{i}\right)-1\right\}\right\}
$$

are all $s<n-1$.
2. The Case where \boldsymbol{G} is an Infinite Cyclic Group. Let G be an infinite cyclic group generated by a :
$G=\left\{a^{m} ; m=0, \pm 1, \pm 2, \cdots\right\}$ where α^{0} is the identity element of G.
Lemma 3. $E(m, p, q), m, p, q$ integers, is expressed by equations of type $E(1, p, q)$.

Proof. If $m \geqq 1$, the lemma is true by Lemma 1 . If $m=0$, $E(0, p, q)$ reduces to an identity. $E(-1, p, q)$ is obtained by adding $E^{\prime}(1,-1, p), E(1,-1, p+q)$, and $E^{\prime}(1, p-1, q)$. For $m^{\prime} \geqq 2, E\left(-m^{\prime}\right.$, $p, q)$ is obtained by adding $E\left(-m^{\prime}+1,-1, p\right), E^{\prime}\left(-m^{\prime}+1,-1, p+q\right)$, $E\left(-m^{\prime}+1, p-1, q\right)$, and $E(-1, p, q)$. The lemma follows by induction.

Lemma 4. For any integer j, it holds that
(6.1) $I\left(a^{i}, a^{j}\right)=I\left(a, a^{i+j-1}\right)+[j, i-1]_{i-1}$ if $i \geqq 2$
(6.2) $I\left(a^{i}, a^{j}\right)=I\left(a, a^{i}\right)+[i+1, j-1]_{-1} \quad$ if $\quad i \leqq-1$.

Proof. The former is shown in the same way as Lemma 2, the latter is proved by adding $E(1, i, j), E(1, i+1, j), \cdots, E(1,-1, j)$.

From Lemmas 3 and 4 we have:
Theorem 3. If G is an infinite cyclic group, the function values $I\left(a, a^{k}\right), k= \pm 1, \pm 2, \cdots$, are independent up to relative size considerations and every function value is determined from these $I\left(a, a^{k}\right), k= \pm 1, \pm 2, \cdots$.

Moreover we have,
Theorem 4. Let G be an infinite cyclic group. $I\left(a^{i}, a^{j}\right) \geqq 0$ for all non-zero integers i, j and they determine an I-function if and only if (7.1), (7.2), and (7.3) below are satisfied:

Let

$$
\begin{aligned}
\bar{m}(k) & =\max _{0 \leq i \leq\left[\frac{k-1}{2}\right]}\left\{[1, k-1]_{i}\right\}, \bar{n}(-k)=\max _{0 \leq i}\left\{[1, i-k]_{i}\right\}, \\
\bar{n}^{\prime}(-k) & =\min _{0 \leq i \leq\left[\frac{k-2}{2}\right]}\left\{I\left(a, a^{-1}\right)+1+[-i-1, i-k]_{i}\right\} .
\end{aligned}
$$

$$
\begin{align*}
& I\left(a, a^{k}\right) \geqq \bar{m}(k), k=1,2, \cdots \tag{7.1}\\
& \left\{\begin{array}{c}
I\left(a, a^{-1}\right) \geqq \bar{n}(-1) \\
\bar{n}^{\prime}(-k) \geqq I\left(a, a^{-k}\right) \geqq \bar{n}(-k), k=1,2, \cdots
\end{array}\right. \tag{7.2}
\end{align*}
$$

(7.3) For any integer $s(\neq 0)$ there exists a positive integer t_{s} such that

$$
\begin{array}{rll}
{\left[s t_{s}, s-1\right]_{s} \geqq 0} & \text { if } & s \geqq 1 \\
{\left[s, s t_{s}-1\right]_{s} \geqq 0} & \text { if } & s \leqq-1 .
\end{array}
$$

Proof. Suppose $I\left(a^{i}, a^{j}\right) \geqq 0$ for all non-zero integers i, j. By (A) it suffices to consider $I\left(a^{i}, a^{j}\right) \geqq 0$ in the following cases:
(i) $2 \leqq i \leqq j$, (ii) $2 \leqq i$ and $j \leqq-1$, (iii) $j \leqq i \leqq-1$.

In each case, from Lemma 4 and $I\left(a^{i}, a^{j}\right) \geqq 0$, we get inequalities
(8.1) $I\left(a, a^{i+j-1}\right) \leqq[1, i+j-2]_{i-1}$
in (i)
(8.2) $I\left(a, a^{j}\right) \geqq[i+j, 0]_{-j}$
(8.3) $I\left(a, a^{i+j}\right) \leqq I\left(a, a^{-1}\right)+1+[i, j-1]_{-i-1} \quad$ in (iii). If we let $k=i+j-1$ in (8.1),

$$
I\left(a, a^{k}\right) \geqq[1, k-1]_{i-1} \quad i=2, \cdots,\left[\frac{k+1}{2}\right] ;
$$

if $k=-j$ in (8.2),

$$
I\left(a, a^{-k}\right) \geqq[i-k, 0]_{k} \quad i=2,3, \cdots ;
$$

if $k=-i-j$ in (8.3),

$$
I\left(a, a^{-k}\right) \leqq I\left(a, a^{-1}\right)+1+[i,-k-i-1]_{-i-1},-i=1, \cdots,\left[\frac{k}{2}\right]
$$

Immediately we have (7.1) and (7.2). By (C) there exists a positive integer t_{s} such that $I\left(a^{s}, a^{s t_{s}}\right)-1 \geqq 0$ for any s and

$$
I\left(a^{s}, a^{s t_{s}}\right)-1= \begin{cases}0 & \text { if } s=0 \\ {\left[s t_{s}, s-1\right]_{s}} & \text { if } s \geqq 1 \\ {\left[s, s t_{s}-1\right]_{-s}} & \text { if } s \leqq-1 .\end{cases}
$$

Thus we have (7.3). The converse of the theorem is obvious.
3. The Case where G is a Direct Product. Suppose that G is the direct product of two commutative groups A and B.

$$
G=A \times B=\{(a, b) ; a \in A, b \in B\} .
$$

Let $E\left(a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3}\right)$ denote the equation obtained by setting x, y, and z as $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$, and (a_{3}, b_{3}) respectively in (B) and let $E^{\prime}\left(a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3}\right)$ be the one obtained by exchanging the two sides of $E\left(a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3}\right)$ with each other.

Lemma 5. All of the equations $E\left(a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3}\right)$ are expressed by equations of the types $E\left(a_{1}, f ; a_{2}, f ; e, b_{3}\right), E\left(e, b_{1} ; e, b_{2} ; a_{3}, f\right)$, $E\left(a_{1}, b_{1} ; e, b_{2} ; a_{3}, f\right), E\left(a_{1}, f ; a_{2}, f ; a_{3}, f\right)$, and $E\left(e, b_{1} ; e, b_{2} ; e, b_{3}\right)$ where e and f are the indentities of A and B respectively.

Proof. Add $E^{\prime}\left(a_{1}, b_{1} ; e, b_{2} ; a_{2}, f\right), E^{\prime}\left(a_{1} a_{2}, b_{1} b_{2} ; e, b_{3} ; a_{3}, f\right), E\left(a_{2}, b_{2} ;\right.$ $\left.e, b_{3} ; a_{3}, f\right), E\left(a_{1}, b_{1} ; e, b_{2} b_{3} ; a_{2} a_{3}, f\right), E^{\prime}\left(e, b_{2} ; e, b_{1} ; a_{1}, f\right), E^{\prime}\left(e, b_{3} ; e, b_{1} b_{2} ;\right.$ $\left.a_{1} a_{2}, f\right), \quad E\left(e, b_{3} ; e, b_{2} ; a_{2}, f\right), \quad E\left(e, b_{2} b_{3} ; e, b_{1} ; a_{1}, f\right), \quad E^{\prime}\left(e, b_{3} ; e, b_{2} ; e, b_{1}\right)$, $E^{\prime}\left(a_{2}, f ; a_{1}, f ; e, b_{1} b_{2}\right), \quad E^{\prime}\left(e, b_{2} b_{3} ; a_{2}, f ; a_{3}, f\right), \quad E\left(a_{2} a_{3}, f ; a_{1}, f ; e, b_{1} b_{2} b_{3}\right)$, $E\left(e, b_{1} b_{2} b_{3} ; a_{1} a_{2}, f ; a_{3}, f\right)$, and $E\left(a_{1}, f ; a_{2}, f ; a_{3}, f\right)$. Then we obtain $E\left(a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3}\right)$.

Lemma 6. For any $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ it holds that

$$
\begin{aligned}
& I\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=I\left(\left(a_{1}, f\right),\left(a_{2}, f\right)\right)+I\left(\left(e, b_{1}\right),\left(e, b_{2}\right)\right) \\
& \quad+I\left(\left(a_{1} a_{2}, f\right),\left(e, b_{1} b_{2}\right)\right)-I\left(\left(a_{1}, f\right),\left(e, b_{1}\right)\right)-I\left(\left(a_{2}, f\right),\left(e, b_{2}\right)\right) .
\end{aligned}
$$

Proof. Add $E^{\prime}\left(a_{1}, b_{1} ; a_{2}, f ; e, b_{2}\right), E^{\prime}\left(a_{2}, f ; a_{1}, f ; e, b_{1}\right)$, and $E^{\prime}\left(e, b_{2} ;\right.$ $\left.e, b_{1} ; a_{1} a_{2}, f\right)$ g.e.d.

Conversely if $I\left(\left(a_{1}, f\right),\left(e, b_{1}\right)\right)$, for all $a_{1} \in A, b_{1} \in B$, are given and if $I\left(\left(a_{1}, b_{1}\right),\left(\alpha_{2}, b_{2}\right)\right)$ is defined in this manner, we can easily prove that the function I satisfies (B).

We define I_{A} and I_{B} as follows:

$$
I_{A}\left(a_{1}, a_{2}\right)=I\left(\left(a_{1}, f\right),\left(a_{2}, f\right)\right), I_{B}\left(b_{1}, b_{2}\right)=I\left(\left(e, b_{1}\right),\left(e, b_{2}\right)\right)
$$

Then we verify that I_{A} and I_{B} are I-functions defined on $A^{\prime}=\{(\mathrm{a}, f)$; $a \in A\}$ and $B^{\prime}=\{(e, b) ; b \in B\}$ respectively.

Therefore, by Lemmas 5 and 6, we get the following theorem:
Theorem 5. Suppose that a direct product $G=A \times B$ of two commutative groups A, B, and that I-values I_{A} for A and I_{B} for B are already given. Then the set $I_{A, B}$ of function values $I((a, f)$, $(e, b)), a \in A \backslash\{e\}, b \in B \backslash\{f\}$, are independent up to relative size considerations and every other value $I\left(\left(a_{1} b_{1}\right),\left(a_{2}, b_{2}\right)\right)$ is determined from I_{A}, I_{B}, and $I_{A, B}$ by the form in Lemma 6.

Remark. All elements of $I_{A, B}$ in Theorem 5 must be chosen so as to satisfy $I\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \geqq 0$ for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$, and additionally (C). For this, how can we choose $I((a, f),(e, b))$ in advance? The complete solution, namely the theory corresponding to Theorem 2 or Theorem 4, is left to the continued series of this paper.

Let $G=A_{1} \times \cdots \times A_{n}$ be the direct product of n commutative groups A_{1}, \cdots, A_{n}. Suppose that I-values I_{i} for $A_{i}, i=1, \cdots, n$ are already given, and consider sets I_{j}^{\prime} of function values:
$I_{j}^{\prime}\left(\left(a_{1}, \cdots, a_{j_{-1}}, e_{j}, \cdots, e_{n}\right),\left(e_{1}, \cdots, e_{j_{-1}}, a_{j}, e_{j+1}, \cdots, e_{n}\right)\right) \quad j=2, \cdots, n$ where

$$
\begin{array}{r}
\left(a_{1}, \cdots, a_{j-1}, e_{j}, \cdots, e_{n}\right) \neq\left(e_{1}, \cdots, e_{n}\right), \\
\left(e_{1}, \cdots, e_{j-1}, a_{j}, e_{j+1}, \cdots, e_{n}\right) \neq\left(e_{1}, \cdots, e_{n}\right)
\end{array}
$$

and e_{k} is the identity element of A_{k}. Then the union of $I_{j}^{\prime}, j=2, \cdots, n$, is a set of I-values independent up to relative size considerations and every other value is determined from $I_{1}, I_{2}, \cdots, I_{n}, I_{2}^{\prime}, \cdots, I_{n}^{\prime}$.

Since every finitely generated commutative group is the direct product of a finite number of cyclic groups, the results obtained above can be applied to any finitely generated commutative group. We have easily the following theorem:

Theorem 6. If a commutative group G has order n, then the number of "independent" I-function values for G is $n-1$.

References

[1] T. Tamura: Commutative nonpotent archimedean semigroup with cancellation law I. Jour. of Gakugei, Tokushima Univ., 8, 5-11 (1957).
[2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups I. Surveys 7, Amer. Math. Soc., Providence, R. I. (1961).

