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In this paper the author will discuss the problems 1, 3 presented
by T. Tamura and N. Graham [4]. The terminology and the numbers
of formulas in the previous paper will be used here without definitions.

A[ P denote the left [right] translation semigroup of a semigroup
S. The necessary and sufficient condition so that S is embeddable
in the right-sided way was given by Theorem 3 in [4]. But we can
find subsemigroups A of Theorem 3 in several ways. We wish to

rewrite Theorem 3.
Let C be the set of all left translations 2 of S such that 20=p2

for all right translations p of S, and D the set of all left translations
of S which has a linked right translation of S. If we set A=CND,
then we can prove easily that A becomes a semigroup containing the
identical mapping 1 and the inner left translation semigroup A,.
If 2 and o are linked, we write A(LK)po. As in [4], we have
Lemma a. If 7€ AN P, then it follows that z(LK)z.

Moreover by Lemma a,
Lemma b. If S is embeddable in the mixed way, t_hen D=A.

Let P\A be the set of elements of P which are not in A.

Theorem 3’. S is embeddable in the right-sided way if and only
if there exists a left translation @ of A such that @(LK)e for all
o€ (P\A).

Proof. Let S be an embeddable semigroup in the right-sided way.
By Theorem 3, there is a subsemigroup A of 4 such that the conditions
(15) and (16) hold. If ae A, then there exists pe P where a(LK)p,
and whence o€ D. Also we conclude aeC from (15). Therefore
we see that ASA. For every right translation o of S, there exists
an element a of ASA such that a(LK)p by using (15).

Conversely, if we take A as a subsemigroup A of Theorem 3,
then A satisfies (15) and (16), since we have 7(LK)r for 7€ PN A.

Theorem 5. Let S be an embeddable semigroup in the mixed way.
Then S is embeddable in the right-sided way if and only if every
translation p in P\C is linked with some left translation v in C.

Proof. From Theorem 2, if S is embeddable in the mixed way,
then there exist subsemigroups A and B having the properties (11),
(12), and (18). Let re ANB. Then 78=pR7 for all B in B, and ar=
ta for all ae A, and so r commute with every left and right
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translations, since AUB=A4UP. Therefore it follows that ANBZC.

Moreover by Lemma b, A=CND=CNA=C. Hence we obtain
Theorem 5 by replacing C as A in Theorem 3.

Theorem 6. Assume that S is embeddable in the right-sided way.
If A\P= A, then S is embeddable in the mixed way.

Proof. We set A=A and B=P. Then AUB=AUP=A4UP,
that is the condition (13) holds. By Theorem 3’, every right translation
o€ B=P is linked with some @ in A. Furthermore, since @e D,
there exists a right translation o linked with @. The condition (12)
follows from A=C.

Theorem 7. Suppose that S is embeddable semigroup in the
right-sided way. Then S is embeddable in the two-sided way if and
only if A=4.

Proof. If A=, then A=C, and A=D. Since S is embeddable
in the right-sided way, every right translation o is linked with some
@ in A=/ by Theorem 3’. Whence S is embeddable in the two-sided
way.

Conversely, if S is embeddable in the two-sided way, then it
follows that C=A=D, and evidently A=CND=4.

Finally, we are concerned with Problem 3 in [4]—can any
semigroup be embeddable either in the right-sided way or in the
left-sided way?

A counter example is provided by the semigroup
. efga,O [ f g a 0
S={e, f,9,a,0} in p. 8 of [1]. Zl:(eOOaO)’ A=
efgal __(efga0 . eie a e a 0
( 00 f0>’ and Z3_<gae fO) are left translatlor'ls of F0 7 g 00
S (ef. [2]). But they have not any linked 0
right translation. Hence S does not satisfy the 99 fof
necessary condition in order that S is embeddable |¢/0 @ ¢ 0 0
in the left-sided way. Also pl:(?)?%?z%)’ 0,= |00 0 0 0 0

<ZJ;%8), and p3=<8];%28) are right translations of S having no linked
left translation, respectively. Therefore S is not embeddable in the
right-sided way, too.
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