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(Comm. by Kinjirb KUNOL ..., Oct. 12, 1965)

3. Now, let us prove the following main theorem.
Theorem. If f(x) is .q)-integrable in I0=[a, b_q, there exists a

measure such that f(x) has a indefinite (E.R. u)-integral, (E.R. u)

f(t)dt, and (E.R. ) f(t)d-(.) f()dt or all e I0.
Proof. We may clearly assume that f(x)=0 for all x e C(Io). If

the function f(x) is summable on I0, we have (E.R. ) f(t)dt-
f()dt-(.q)) f(t)dt or every measure which ulfils condition 1")

and 2*) [i].
Next, we shall consider the case in which f() is not summable.

Let f() be a function which is .q)-integrable but not summable on
I0. Then, there exists, by the lemma, a non-decreasing sequence of

closed sets {F} such that (i) U F-/0, (ii)f(x) is summable on F,

(iii) IF(I)-I f(x)dxl<_2- for every interval IC lo, (1)

(iv) 3.[F(J{)[ _< 2-’ (2)

for the sequence of intervals {J} contiguous to the closed set which
consists of all points of F and end points of I0.

Since f(z)is by hypothesis, not summable, we may assume that

If(x) _> 1, 2,d 2- l- 3
FI--Fl--

(we regard F0 as empty). (3)
On account of this and summability of f() on F, we find, for

every l, a measurable set HcF such that f()>_f(x’) for every
x e H and ’ e F-H, and

If(x) dx-2-.
Writing ,= mes H,, we see at once that

mes (F, F_)> ,, (5)
,>,+, (6)

mes (E)<, implies I If(x) dx2-’ (7)

for every measurable set EcF,.
Let h, and k, be integers such that

(h- 1)3, < rues (F, F, 1) < h,3,, (8)
2’-,+<,<2+ (9)
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Then, h and k are uniquely determined and we have, by (5) and
(6), h_>2 and k_>l. Hence there exists, for each n, a integer l(n) such

/()--I l( /()--I

that ] (h/k) <n
_
] (h k). Writing m(n)-n- , (h k),

/=1 /-1 l=

we have
(q)--I

n-- (h + k) + re(n), 1 <_ m(n) <_ h() / k(,). (10)

Let a-a< a7<a+ <a’+-b be a sequence such

’mes(F-F_)/h when l_m_h-i
mes (F F_)/h 2

mes (F F_)
[a-, a] when h mgh+k 1 (11)

mes (F F_)/h 2-when m-h+k.
Writing E0-(-, a)(b,

or nl, we have E,E,,- or nn’ and E,- (F-F_)-{a}-

--{a}. Hence, if we define a measure by the relation (E)-

2-’mes(EE,) for every measurable set E, (E) is a measure

which fulfills the conditions 1") and 2*).
Now we shall show that the sequence V(e, A" f) which defined

by the relations that

A,- UEU(- a] U(b,

0 or x e C(A)
is canchy sequence converge to f(x).

It is easily seen that e i 0 and that A is a non-decreasing

sequence of closed sets such that U A-(-, ). It follows that

V(e,A;f)D(e+, A+; f+) and f(x) V(e, A" f) for every n. 0n
account of (11), (8), and (6), we have

(AI)-

2-"$() <e for every n.
Since u(B)2-’mes(B) for every BcA, u(B)gu(C(A)) implies
rues (BA)g2"(B)2.2-..()--(,). Hence, by (7), we have, for
every measurable set B

(B)g(C(A)) implies

JBNA

that
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It is easily seen that (E+)>_-(E). It follows that (C(A+)

(E+)>_-(E+). Hence, we have, for every

(c(A,)) (c(A,+)) +(E+) (v(A+))
+4(c(A+)) 5(c(A+)).

Finally, we shall show that f.(x)dx tend to F(I) for every interval

ICIo. Let I=x, x be a interval contained in I0 and let l=l(n),
m=m(n). Then, writing I=I a, a, I=I a, b, we have
A. I=(F I) (F_ I). Hence we have, by (1),

IF(I)- f,(x)dx F(I)- f(x)dx
+ F(I)- f(x)dx g2-+2-(-’-3.2-.

I2l--1

Since lim/(n)-0, f(x)dx tend to F(I)for every interval IC Io.
This complete the proof.

Corollary. If f.(x) is -integrable on =a, b, there exists a
measure and a cauchy sequence V(e,A,;f)e(f; ) such that

(i) A, is a non-decreasing sequence of closed sets such that

(-, ), (ii) = f,()d _<s for every n and n, where {Z}
is the sequence of intervals contiguous to A,

(iii) I() f(x)dx- f(x)dx
for every interval ICIo.

Proof. Taking e.=(28+ ]I0 ]).2-() and taking A, f, l(n),
re(n), F etc. as in the previous theorem, we need only prove that
V(e, A: f) fulfills second condition. On account of (1), we have,
for every interval J contained in some J,

]F(J)] g2-. (12)
It follows at once that,

f(x)dx, 2-+ (13)

for every interval J contained in some J and for every l and l’.
For every l’ l, being

f(x)dx- f(J{)-- N f(J,),

we have

=1

Now, let , l=/(), m=(), a=a (=1, ) and let e[g]
be the nearest oint o A[a,a[A[a,b] to a reseetiely
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(k= 1, 2).
J_ respectively., f.(x)dx

=i I

Then (c, d) and (c, d) are contained in some J_ and

.< , I.f(x)dx{1:I/1 [a, 2]

{t:Iinl[d.,b]} InlNFl2-1 [2,a2] NF12

[a2,d2] NFI_ {j:Jlc[a,ol]} /1NF2

f(x)dxf(x)dx +

or eery >. When N,

N f,,(x)dx g
nl (Anl)

This complete the proof.
xample. We shall consider a function which has A-integral

and -integral on but (A) f(x)dx() f(x)dx. And we shall
I I

construct a measure such that (E.R. ,) f(x)dx-() f(x)dx for
J

every interval I I0.
Let

2’-/4n--3 for x e 2-’++ 2-’+, 2-’++2-+)
2’-/4n--1 for x e 2-’++2-’+, 2-’++2-’+)

f(x)- _2/2n for x e 2-’++ 2-’, 2-’++2-’+)
0 for xe(-, 03, +).

Then it is easily seen that

() f(x)dx-g
(A) :f(x)dx- 31og 2.

Next we shall consider (E.R. ) integral. Let {F} be the non-
decreasing sequence of slosed sets such that F=(-, 0) U 2-++2-,
+ ). Then, applying the same method as in the theorem, we have
a sequence O=a+< <a+<a< <a<2-++2-+ for every
l, and we have A.=(-, 0 U max (2-’+ 2-, at), + for every n,
l=l(n) and m=m(n). It follows at once that

Hence we have, by (13) and (14),
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lim f,(x)dx- lim f(x)dx- lim f(x)dx-(..) f(x)dx.
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