149. On Indefinite (E.R.)-Integrals. I

By Kumiko Fujita

(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)
§ 1. I.A. Vinogrdova [1] constructed a function $f(x)$ such that (i) $f(x)$ is \mathscr{D}-integrable [2] on $[0,1]$, (ii) $f(x)$ has a continuous indefinite A-integral, $A(x)=(A) \int_{0}^{x} f(t) d t$ [3], (iii) $A(x) \neq(\mathscr{D}) \int_{0}^{x} f(t) d t$ ($x \in P$, mes $P>0$). On the other hand I. Amemiya and T. Ando [4] proved that A-integral is equivalent to (E.R.) integral for Lebesgue measure [5].

In the paper "On indefinite (E.R.)-integrals. II', we shall show that, for every function $f(x)$ which is \mathscr{D}-integrable on $I_{0}=[a, b]$, there exists a measure ν such that $f(x)$ has a indefinite (E.R. ν)integral, (E.R. $\nu) \int_{a}^{x} f(t) d t$ [6], and (E.R. $\left.\nu\right) \int_{a}^{x} f(t) d t=(\mathscr{D}) \int_{a}^{x} f(t) d t$ for all $x \in I_{0}$.

For this purpose, first we shall generalize (see the Lemma of § 2) the theorem which has been proved by S . Nakanishi (formerly S . Enomoto) [7].

Nakanishi's theorem. Let $f(x)$ be a function which is \mathscr{D}^{*} integrable [8] on $I_{0}=[a, b]$ and let $F(I)=\left(\mathscr{D}^{*}\right) \int_{I} f(x) d x$. Then, for every sequence $\left\{\varepsilon_{n}\right\}, \varepsilon_{n} \downarrow 0$, there exists a non-decreasing sequence of closed sets such that (i) $\bigcup_{n=1}^{\infty} F_{n}=I_{0}$, (ii) $f(x)$ is summable on every F_{n}, (iii) the condition, $I_{i} \cap{ }_{n}^{n=1} F_{n} \neq \phi$ for all i, implies that

$$
\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{\boldsymbol{i}} \cap F_{n}} f(x) d x\right|<\varepsilon_{n}
$$

for every finite family $\left\{I_{i}: i=1 \cdots i_{0}\right\}$ of non-overlapping intervals contained in I_{0}.
§ 2. For \mathscr{D}-integral, we shall prove the following lemma which may be regarded as a generalization of Nakanishi's theorem.

Lemma. Let $f(x)$ be a function which is \mathscr{D}-integrable on $I_{0}=$ $[a, b]$ and let $F(I)=(\mathscr{D}) \int_{a}^{x} f(t) d t$. Then, for every sequence $\left\{\varepsilon_{n}\right\}$, $\varepsilon_{n} \downarrow 0$, there exists a non-decreasing sequence of closed sets $\left\{F_{n}\right\}$ such that (i) $\bigcup_{n=1}^{\infty} F_{n}=I_{0}$, (ii) $f(x)$ is summable on every F_{n}, (iii) $\left|F(I)-\int_{F_{n} \cap I} f(x) d x\right| \leq \varepsilon_{n}$ for every interval $I \subset I_{0}$, (iv) $\sum_{i=1}^{\infty}\left|F\left(I_{n}^{i}\right)\right| \leq$ ε_{n} for the sequence of intervals contiguous to the closed set which consists of all points of F_{n} and end points of I_{0}.

Proof. It is enough to show that every function of $\mathcal{L}_{\alpha}\left(I_{0}\right)$,
for $\alpha<\Omega$, possesses this property. Let us show it by transfinite induction.
(1) In the case, $\alpha=0$, being $\mathcal{L}_{0}\left(I_{0}\right)=\mathcal{L}\left(I_{0}\right)$, the sequence $\left\{F_{n}=I_{0}\right\}$ fulfills the required conditions (i), (ii), (iii), and (iv).
(2) In the case, $0<\alpha<\Omega$, we shall show that every function of $\mathcal{L}_{\alpha}\left(I_{0}\right)$ possesses this property if every functions of $\mathcal{L}_{\xi}\left(I_{0}\right)$, for $\xi<\alpha$, possesses. We shall consider two cases separately.
(a) The function $f(x) \in\left(\sum_{\xi<\infty} \mathcal{L}_{\xi}\left(I_{0}\right)\right)^{\sigma}$. Let $\left\{p_{l}: l=0 \cdots l_{0}\right\}$, $p_{l}<p_{l+1}$, be the set consisting of all $\left(\sum_{\xi<\alpha} \mathcal{L}_{\xi}\right)$-singular points in I_{0} of $f(x)$ and end points of I_{0}. Then on account of continuity of $F(I)=$ $(\mathscr{D}) \int_{I} f(x) d t$, there exists $\delta_{n}>0$ such that, for every interval $I \subset I_{0}$,

$$
\begin{equation*}
|I|<\delta_{n} \quad \text { implies } \quad|F(I)|<\varepsilon_{n} / l_{0} . \tag{1}
\end{equation*}
$$

In each interval $\left[p_{l-1}, p_{l}\right]$, we may choose two sequences $\left\{a_{i}^{j}\right\}$ and $\left\{b_{l}^{j}\right\}, p_{l-1}<\cdots<a_{l}^{j+1}<a_{l}^{j}<\cdots<a_{l}^{1}<b_{l}^{1}<\cdots<b_{l}^{j}<b_{l}^{j+1}<\cdots<p_{l}$, such that

$$
\begin{equation*}
a_{l}^{j}-p_{l-1}<\delta_{j} \quad \text { and } \quad p_{l}-b_{l}^{j}<\delta_{j} \tag{2}
\end{equation*}
$$

for every j.
We write $\quad J_{l}^{2}=\left[a_{l}^{1}, b_{l}^{1}\right], \quad J_{l}^{2 j-1}=\left[a_{l}^{j}, a_{l}^{j-1}\right](j=2,3, \cdots)$, $J_{l}^{2 j}=\left[b_{l}^{j-1}, b_{l}^{j}\right] \quad(j=2,3, \cdots)$, $J_{l}^{\prime 2 j-1}=\left[p_{l-1}, a_{l}^{j}\right](j=1,2, \cdots)$,
and

$$
J_{l}^{2 j}=\left[b_{l}^{j}, p_{l}\right] \quad(j=1,2, \cdots)
$$

Since $f(x) \in \sum_{\xi<\infty} \mathcal{L}_{\xi}\left(J_{i}^{j}\right)$ for every l and $j, f(x) \in \mathcal{L}_{\varepsilon_{l}^{j}}\left(J_{l}^{j}\right)$ for some $\xi_{l}^{j}<\alpha$, and there exists, by hypothesis of induction, a non-decreasing sequence of closed sets $\left\{F_{l, m}^{j}(m=1,2, \cdots)\right\}$ such that (i') $\bigcup_{m=1}^{\infty} F_{l, m}^{j}=I_{0}$, (ii') $f(x)$ is summable on every $F_{i, m}^{j}$,
(iii') $\left|F(I)-\int_{F_{l, m}^{j}} f(x) d x\right| \leq \varepsilon^{m} / l_{0} \cdot 2^{j}$ for every interval $I \subset J_{l}{ }^{j}$, (3)
(iv') $\sum_{k=1}^{\infty}\left|F\left(I_{l, m}^{j, k}\right)\right| \leq \varepsilon_{m} / l_{0} \cdot 2^{j}$
for the sequence of intervals $\left\{I_{l, m}^{j, k}(k=1,2, \cdots)\right\}$ contigouous to the closed set which consists of all points of $F_{i, m}^{j}$ and end points of J_{i}^{j}.

Writing $F_{n}=\bigcup_{l=1}^{l_{0}} \bigcup_{j=2}^{2 n} F_{i, n}^{j} \cup\left\{p_{l}\right\} \cup\left\{a_{l}^{\prime}, b_{l}^{j} ;\left(l=1,2, \cdots l_{0}\right)(j=1,2, \cdots n)\right\}$ we shall show that the sequence of closed sets F_{n} fulfills the required conditions (i), (ii), (iii), and (iv). It is clear by the construction of F_{n} that $\left\{F_{n}\right\}$ is a non-decreasing sequence of closed sets on each of which $f(x)$ is summable and that $\bigcup_{n=1}^{\infty} F_{n}=I_{0}$. On account of (1), (2), and (3), we have, for every interval $I \subset I_{0}$,

$$
\left|F(I)-\int_{F_{n} \cap I} f(x) d x\right|=\mid \sum_{l=1}^{l_{0}}\left\{\sum_{j=2}^{2 n} F\left(J_{l}^{j} \cap I\right)+F\left(J_{l}^{\prime 2 n-1} \cap I\right)+F\left(J_{l}^{\prime 2 n} \cap I\right)\right.
$$

$$
\begin{aligned}
& \left.-\sum_{j=2}^{2 n} \int_{F_{l, n}^{i} \cap I} f(x) d x\right\} \leq \sum_{l=1}^{l_{0}} \sum_{j=2}^{2 n}\left|F\left(J_{l}^{j} \cap I\right)-\int_{F_{l, n}^{j} \cap I} f(x) d x\right| \\
& +\sum_{l=1}^{l_{0}}\left\{\left|F\left(J_{l}^{\prime 2 n-1} \cap I\right)\right|+\left|F\left(J_{l}^{\prime 2 n} \cap I\right)\right|\right\} \\
& \leq \sum_{l=1}^{l_{0}}\left(\sum_{j=2}^{2 n} \varepsilon_{n} / l_{0} \cdot 2^{j}+\varepsilon_{n} / 4 l_{0}+\varepsilon_{n} / 4 l_{0}\right)<\varepsilon_{n} .
\end{aligned}
$$

Let $\left\{I_{n}^{i}\right\}$ be the sequence of intervals contiguous to the closed set which consists of all points of F_{n} and end points of I_{0}. Then, the family $\left\{I_{n}^{i}\right\}$ is equal to the family

$$
\begin{gathered}
\left\{I_{l, n}^{j, k}(k=1,2, \cdots)\left(l=1,2, \cdots, l_{0}\right)(j=1,2, \cdots, 2 n)\right\} \\
\cup\left\{J_{l}^{\prime 2 n-1}\left(l=1,2, \cdots, l_{0}\right)\right\} \cup\left\{J_{l}^{\prime 2 n}\left(l=1,2, \cdots l_{0}\right)\right\}
\end{gathered}
$$

and therefore, we have, by (1), (2), and (4),

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|F\left(I_{n}^{i}\right)\right| & =\sum_{l=1}^{l_{0}}\left\{\sum_{j=2}^{2 n} \sum_{k=1}^{\infty}\left|F\left(I_{l, n}^{j, k}\right)\right|+\left|F\left(J_{l}^{\prime 2 n-1}\right)\right|+\left|F\left(J_{l}^{\prime 2 n}\right)\right|\right\} \\
& \leq \sum_{l=1}^{l_{0}}\left(\sum_{j=2}^{2 n} \varepsilon_{n} / l_{0} \cdot 2^{j}+\varepsilon_{n} / 4 l_{0}+\varepsilon_{n} / 4 l_{0}\right)<\varepsilon_{n} .
\end{aligned}
$$

(b) The function $f(x) \in\left(\sum_{\xi<\infty} \mathcal{L}_{\xi}\left(I_{0}\right)\right)^{\sigma_{H}}$. Let S be the closed set of all ($\left.\sum_{\xi<\alpha} \mathcal{L}_{\xi}\right)^{\sigma}$-singular points in I_{0} of $f(x),\left\{J_{l}(l=1,2,3 \cdots)\right\}$ the sequence of intervals contiguous to the closed set consisting of all points of S and end points of I_{0}. Then $f(x) \in\left(\sum_{\xi<\alpha} \mathcal{L}_{\xi}\left(J_{l}\right)\right)^{0}$. Hence, by what has just been proved in (a), there exists a non-decreasing sequence of closed set $\left\{F_{l, m}(m=1,2,3 \cdots)\right\}$ such that (i' ${ }^{\prime \prime} \bigcup_{m=1}^{\infty} F_{l, m}=J_{l}$, (ii') $f(x)$ is summable on $F_{l, m}$,
(iii")

$$
\begin{equation*}
\left|F(I)-\int_{F_{l, m \cap I}} f(x) d x\right| \leq \varepsilon_{m} / 2^{l+2} \tag{5}
\end{equation*}
$$

for every interval $I \subset J_{l}$,
(iv")

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|F\left(I_{i, m}^{j}\right)\right| \leq \varepsilon_{m} / 2^{l+2} \tag{6}
\end{equation*}
$$

for the sequence of intervals $\left\{I_{i, m}^{j}(j=1,2, \cdots)\right\}$ contiguous to the closed set which consists of all points of $F_{l, m}$ and end points of J_{l}.

Since $f(x) \in\left(\sum_{\xi<\alpha} \mathcal{L}_{\xi}\left(I_{0}\right)\right)^{\sigma \pi}$, there exsists a strictly increasing sequence of integer $\left\{l_{n}\right\}$ such that

$$
\begin{align*}
& \sum_{l=l_{n}+1}^{\infty}\left|\left(\left(\sum_{\xi<\infty} \mathcal{L}_{\xi}\right)^{\sigma}, J_{l} ; f\right)\right| \leq \varepsilon_{n} / 8 \tag{7}\\
& O\left(\left(\sum_{\xi<\infty} \mathcal{L}_{\xi}\right)^{\sigma}, J_{l} ; f\right) \leq \varepsilon_{n} / 8 \tag{8}
\end{align*}
$$

for all $l>l_{n}$.
Let $F_{n}^{\prime}=\bigcup_{l=1}^{l_{n}} F_{l, n}$. Then $f(x)$ is summable on F_{n}^{\prime}. Hence there exists $\delta_{n}^{\prime}>0$ such that, for every measurable set $E \subset F_{n}^{\prime}$,

$$
\begin{equation*}
\operatorname{mes}(E)<\delta_{n}^{\prime} \quad \text { implies } \quad \int_{E}|f(x)| d x<\varepsilon_{n} / 8 \tag{9}
\end{equation*}
$$

Let $f_{s}(x)$ be the restriction of $f(x)$ on S and let

$$
F_{s}(I)=(\mathscr{D}) \int_{I} f_{s}(x) d x .
$$

Then $f_{s}(x) \in\left(\sum_{\varepsilon<\alpha} \mathcal{L}_{\xi}\left(I_{0}\right)\right)^{\sigma}$ and there exists a non-decreasing sequence of closed sets $\left\{\sum_{0, m}(m=1,2 \cdots)\right\}$ such that ($\left.\mathrm{i}^{\prime \prime \prime}\right) \bigcup_{m=1}^{\infty} F_{0, m}=I_{0}$, (ii'") $f_{s}(x)$ is summable on $F_{0, m}$,
(iii"')

$$
\begin{equation*}
\left|F_{s}(I)-\int_{F_{0, m} \cap I} f(x) d x\right| \leq \varepsilon_{m} / 4 \tag{10}
\end{equation*}
$$

for every interval $I \subset I_{0}$,
(iv"')

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|F_{s}\left(I_{0, m}^{j}\right)\right| \leq \varepsilon_{m} / 4 \tag{11}
\end{equation*}
$$

for the sequence of intervals $\left\{I_{0, m}^{j}(j=1,2, \cdots)\right\}$ contiguous to the closed set which consists of all points of $F_{0, m}$ and end points of I_{0}.

Since $\lim _{m \rightarrow \infty}$ mes $\left(I_{0}-F_{0, m}\right)=0$, we may assume that

$$
\begin{equation*}
\operatorname{mes}\left(I_{0}-F_{0, m}\right)<\delta_{m}^{\prime} . \tag{12}
\end{equation*}
$$

Writing $F_{n}=\left(S \cup F_{n}^{\prime}\right) \cap F_{0, n}$ we shall show that the sequence of closed sets $\left\{F_{n}\right\}$ fulfills the required conditions (i), (ii), (iii), and (iv). It is clear that $\left\{F_{n}\right\}$ is non-decreasing sequence of closed sets on each of which $f(x)$ is summable, and that $\bigcup_{n=1}^{\infty} F_{n}=I_{0}$. Since $F_{n}=$ $\left(S \cap F_{0, n}\right) \cup\left[F_{n}^{\prime}-\left\{F_{n}^{\prime} \cap C\left(F_{0, n}\right)\right\}\right]$ and mes $\left(S \cap \frac{n=1}{F_{n}^{\prime}}\right)=0$, it follows from (5), (7), (8), (10), (9), and (12) that

$$
\begin{aligned}
\mid F(I) & -\int_{F_{n} \cap I} f(x) d x|=|\left\{F_{s}(I)+\sum_{l=1}^{\infty} F\left(J_{l} \cap I\right)\right\} \\
& -\left\{\int_{S \cap F_{0, n} \cap I} f(x) d x+\int_{F^{\prime} \cap \cap I} f(x) d x-\int_{F^{\prime} n \cap \sigma\left(F_{0}\right) \cap \cap} f(x) d x \mid\right. \\
& \leq\left|F_{s}(I)-\int_{F_{0, n} \cap I} f(x) d x\right|+\sum_{l=1}^{l_{n}}\left|F\left(J_{l} \cap I\right)-\int_{F_{l, n} \cap I} f(x) d x\right| \\
& +\sum_{l=l_{n}+1}^{\infty}\left|F\left(J_{l} \cap I\right)\right|+\int_{F_{n}^{\prime} \cap \sigma\left(F_{0, n}\right)}|f(x)| d x \\
& \leq \varepsilon_{n} / 4+\sum_{l=1}^{l_{n}} \varepsilon_{n} / 2^{l+2}+\sum_{l=l_{n}+1}^{\infty}\left|F\left(J_{l}\right)\right| \\
& +2 \sup _{l>l_{n}} 0\left(\left(\sum_{\xi<\alpha} \mathcal{L}_{\xi}\right)^{\sigma}, J_{l} ; f\right)+\varepsilon_{n} / 8<\varepsilon_{n}
\end{aligned}
$$

for ever interval $I \subset I_{0}$.
Finally, let $\left\{I_{n}^{j}\right\}$ be the sequence of intervals contiguous to the closed set which consists of all points of F_{n} and end points of I_{0}. Then for each $I_{l, n}^{j}, 0 \leq l \leq l_{n}$, [for each $J_{l}\left(l>l_{n}\right)$], there exists a interval I_{n}^{i} such that $I_{l, n}^{j} \subset I_{n}^{i}\left[J_{l} \subset I_{n}^{i}\right]$. Hence, we have

Therefore, on account of (6), (7), (11), (9), and (12), we have

$$
\sum_{i=1}^{\infty}\left|F\left(I_{n}^{i}\right)\right| \leq \sum_{l=1}^{l_{n}} \sum_{j=1}^{\infty}\left|F\left(I_{l . n}^{j}\right)\right|+\sum_{l=l_{n}+1}^{\infty}\left|F\left(J_{l}\right)\right|
$$

$$
\begin{aligned}
& +\sum_{j=1}^{\infty}\left|F_{s}\left(I_{0, n}^{j}\right)\right|+\int_{F^{\prime} n \cap \sigma\left(F_{0, n}\right)}|f(x)| d x \\
& \leq \varepsilon_{n} / 4+\varepsilon_{n} / 8+\varepsilon_{n} / 4+\varepsilon_{n} / 8<\varepsilon_{n}
\end{aligned}
$$

This complete the proof.

References

[1] I.A. Vinogradova: On indefinite A-integrals. Izv. Akad. Nauk SSSR Ser. Mat., 25, 113-142 (1961).
[2] Saks: Theory of Integral. pp. 254-259 (1937).
[3] E.C. Titchmarsh: On Conjugate functions. Proc.London Math. Soc., 29, 49-80 (1929).
A. Kolomogoroff: Grundbegriffe der Wahrsheinlich-keitsrechnung, Berlin (1933).
[4] I. Amemiya and T. Ando: Measure-theoretic singular integral. Bull. Res. Inst. App. El., Hokkaido University, 13, 33-50 (1961).
[5] K. Kunugi: Application de la méthode des espaces rangés à la théorie de l'intégration. I. Proc. Japan Acad., 32, 215-220 (1956).
[6] H. Okano: Sur une généralisation de l'intégrale (E.R.) et un théorème général de l'intégration par parties. Jour. Math. Soc. Japan, 14, 430-442 (1962).
[7] S. Enomoto: Sur une totalisation dans les espaces de plusieurs dimension. I. Osaka Math. J., 7, 69-102 (1955).
[8] Saks: Ibid.

