## 142. On the Total Regularity of Riemann Summability

By Hiroshi Hirokawa<br>Department of Mathematics, Chiba University, Chiba, Japan<br>(Comm. by Kinjirô Kunugr, m.J.A., Oct. 12, 1965)

§ 1. A method of summation is said to be regular if it assigns to every convergent series its actual value. If it furthermore assigns the value $+\infty$ to every series which diverges to $+\infty$, it is said to be totally regular. In this paper we shall consider the total regularity of Riemann summability. Throughout this paper, $p$ denotes a positive integer. A series $\sum_{n=1}^{\infty} a_{n}$ is said to be summable $(R, p)$ to $s$ if the series in

$$
f_{p}(t)=\sum_{n=1}^{\infty} a_{n}\left(\frac{\sin n t}{n t}\right)^{p}
$$

converges in some interval $0<t<t_{0}$ and $f_{p}(t) \rightarrow s$ as $t \rightarrow 0+$. A series $\sum_{n=1}^{\infty} a_{n}$, with its partial sum $s_{n}$, is said to be summable $\left(R_{p}\right)$ to $s$ if the series in

$$
F_{p}(t)=C_{p}^{-1} t \sum_{n=1}^{\infty} s_{n}\left(\frac{\sin n t}{n t}\right)^{p}
$$

where

$$
C_{p}=\int_{0}^{\infty} u^{-p} \sin ^{p} u d u
$$

converges in some interval $0<t<t_{0}$ and $F_{p}(t) \rightarrow s$ as $t \rightarrow 0+$. It is well-known that the methods ( $R, p$ ) and ( $R_{p}$ ) are regular when $p \geqq 2$, while the methods ( $R, 1$ ) and ( $R_{1}$ ) are not regular. (See, for example, [2]). But, concerning the total regularity of Riemman summability, the S.C. Lee's result [4] seems to be the only one. He proved that the method $(R, 2)$ is not totally regular.
$\S 2$. We shall first prove the following theorem.
Theorem 1. The method ( $R, p$ ) is not totally regular when $p \geqq 2$. More precisely, given a monotone increasing sequence $\left\{W_{n}\right\}$ tending to $+\infty$ such that $W_{n} n^{-p} \rightarrow 0$ as $n \rightarrow \infty$, there exists a series $\sum_{n=1}^{\infty} a_{n}$ with $\left|a_{n}\right| \leqq 2 W_{n} / n$ for all $n$, such that

$$
\sum_{n=1}^{\infty} a_{n}=+\infty \quad \text { and } \quad \liminf _{t \rightarrow 0+} \sum_{n=1}^{\infty} a_{n}\left(\frac{\sin n t}{n t}\right)^{p}=-\infty
$$

Proof. We shall choose a sequence $\left\{N_{k}\right\}$ such that $N_{1}=1$, $2 N_{k-1}<N_{k}$, and $N_{k} / 25=$ an integer when $k=2,3,4, \cdots$, and define a series $\sum_{n=1}^{\infty} a_{n}$ such that

$$
a_{n}= \begin{cases}w_{k} / N_{k} & N_{k}<n \leqq \frac{26}{25} N_{k} \\ -w_{k} / 2 N_{k} & \frac{6}{5} N_{k}<n \leqq \frac{31}{25} N_{k} \\ 0 & \text { elsewhere }\end{cases}
$$

where $w_{k}=W_{N_{k}}$, when $k=1,2,3, \cdots$. Then it is easily seen that $\sum_{n=1}^{\infty} a_{n}=+\infty$. Let us now put $t_{\nu}=2 \pi / N_{\nu}$ and write

$$
\begin{align*}
f_{p}\left(t_{\nu}\right) & =\sum_{n=1}^{\infty} a_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p}=\sum_{k=1}^{\infty} \sum_{n=N_{k}}^{N_{k+1}^{-1}} a_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p}  \tag{1}\\
& =\sum_{k=1}^{\nu-1} U_{k}+U_{\nu}+\sum_{k=\nu+1}^{\infty} U_{k}=\sum_{1}+\sum_{2}+\sum_{8},
\end{align*}
$$

say, where

$$
U_{k}=\sum_{n=N_{k}}^{N_{k+1} 1^{-1}} a_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p}
$$

For $\sum_{1}$, we have

$$
\begin{align*}
\left|\sum_{1}\right| & =\left|\sum_{k<\nu} U_{k}\right| \\
& \leqq \sum_{k<\nu}\left(\frac{w_{k}}{N_{k}} \sum_{n=N_{k}+1}^{\frac{26}{25} N_{k}}\left|\frac{\sin n t_{\nu}}{n t_{\nu}}\right|^{p}+\frac{1}{2} \frac{w_{k}}{N_{k}} \sum_{n=\frac{\beta_{0}}{5} N_{k}+1}^{\frac{31}{25} N_{k}}\left|\frac{\sin n t_{\nu}}{n t_{\nu}}\right|^{p}\right) \\
& \leqq \sum_{k<\nu} \frac{w_{k}}{N_{k}} \cdot \frac{1}{25} N_{k}+\frac{1}{2} \sum_{k<\nu} \frac{w_{k}}{N_{k}} \cdot \frac{1}{25} N_{k}  \tag{2}\\
& =\frac{1}{25} \sum_{k<\nu} w_{k}+\frac{1}{50} \sum_{k<\nu} w_{k}<\frac{2}{25} \nu w_{\nu-1} .
\end{align*}
$$

Now we estimate $\sum_{2}$.

$$
\begin{aligned}
\sum_{2} & =\frac{w_{\nu}}{N_{\nu}} \sum_{n=N_{\nu}+1}^{2 \sigma^{2} N_{\nu}}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p}-\frac{w_{\nu}}{2 N_{\nu}} \sum_{n=\frac{6}{5} N_{\nu}+1}^{\frac{31}{21^{2}} N_{\nu}}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p} \\
& =\sum_{21}-\sum_{22}, \text { say. }
\end{aligned}
$$

In $\sum_{21}$, since $N_{\nu}<n \leqq \frac{26}{25} N_{\nu}$,

$$
\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p} \leqq \frac{1}{(2 \pi)^{p}} \sin ^{p} \frac{2}{25} \pi \leqq \frac{1}{25^{p}},
$$

and in $\sum_{22}$, since $\frac{30}{25} N_{\nu}<n \leqq \frac{31}{25} N_{\nu}$,

$$
\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p}=\left(\frac{\sin \left(n t_{\nu}-2 \pi\right)}{n t_{\nu}}\right)^{p} \geqq\left(\frac{25}{62 \pi}\right)^{p} \sin ^{p} \frac{10}{25} \pi \geqq\left(\frac{10}{31 \pi}\right)^{p} .
$$

Hence

$$
\begin{align*}
& \sum_{2} \leqq\left(\frac{1}{25}\right)^{p} \frac{w_{\nu}}{N_{\nu}} \cdot \frac{1}{25} N_{\nu}-\frac{w_{\nu}}{2 N_{\nu}}\left(\frac{10}{31 \pi}\right)^{p} \cdot \frac{1}{25} N_{\nu} \\
&=\frac{1}{25}\left\{\left(\frac{1}{25}\right)^{p}-\frac{1}{2} \cdot\left(\frac{10}{31 \pi}\right)^{p}\right\} w_{\nu}  \tag{3}\\
& \leqq-A w_{\nu}
\end{align*}
$$

where $A$ is a positive constant. Finally

$$
\begin{aligned}
& \left|\sum_{3}\right|=\left|\sum_{k>\nu} \sum_{n=N_{k}}^{N_{k+1}{ }^{-1}} a_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{p}\right| \\
& \leqq \sum_{k>\nu} \frac{w_{k}}{N_{k}} \sum_{n=N_{k}+1}^{\frac{26}{25} N_{k}}\left|\frac{\sin n t_{\nu}}{n t_{\nu}}\right|^{p}+\sum_{k>\nu} \frac{w_{k}}{2 N_{k}} \sum_{n=\frac{30}{25} N_{k}+1}^{\sum_{25}^{25} N_{k}}\left|\frac{\sin n t_{\nu}}{n t_{\nu}}\right|^{p} \\
& \leqq \sum_{k>\nu} \frac{w_{k}}{N_{k}^{p+1} t_{\nu}^{p}} \cdot \frac{1}{25} N_{k}+\sum_{k>\nu} \frac{w_{k}}{2 N_{k}^{p+1} t_{\nu}^{p}} \cdot \frac{1}{25} N_{k} \\
& \leqq \sum_{k>\nu} \frac{w_{k}}{N_{k}^{p} t_{\nu}^{p}}=t_{\nu}^{-p} \sum_{k>\nu} \frac{w_{k}}{N_{k}^{p}}=t_{\nu}^{-p} \sum_{k>\nu} v_{k},
\end{aligned}
$$

where $v_{k}=w_{k} / N_{k}^{p}$. Putting $\rho_{k}=v_{k} / v_{k-1}$, we have

$$
\begin{align*}
& \left|\sum_{3}\right| \leqq t_{\nu}^{-p} v_{\nu} \sum_{k>\nu} \frac{v_{k}}{v_{\nu}}  \tag{4}\\
& \quad=t_{\nu}^{-p} v_{\nu}\left(\rho_{\nu+1}+\rho_{\nu+1} \rho_{\nu+2}+\rho_{\nu+1} \rho_{\nu+2} \rho_{\nu+3}+\cdots\right) \\
& \quad=o\left(w_{\nu} t_{\nu}^{-p} N_{\nu}^{-p}\right)=o\left(w_{\nu}\right),
\end{align*}
$$

provided that

$$
\rho_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Since

$$
W_{n} n^{-p} \rightarrow 0 \text { and } W_{n} \nearrow \infty \quad \text { as } n \rightarrow \infty,
$$

we may choose the sequence $\left\{N_{k}\right\}$ such that

$$
k w_{k-1} / w_{k} \rightarrow 0 \quad \text { and } \quad \rho_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Thus, by (1), (2), (3), and (4), we have

$$
f_{p}\left(t_{\nu}\right)=o\left(w_{\nu}\right)-A w_{\nu}
$$

Therefore we get

$$
\lim _{\nu \rightarrow \infty} f_{p}\left(t_{\nu}\right)=-\infty,
$$

and then

$$
\lim _{t \rightarrow 0+} \inf _{p}(t)=-\infty,
$$

which is the required result.
§ 3. Next we shall state the following theorem without the proof, since the proof is exactly similar to that of S.C. Lee's theorem. ([4, Theorem 1]).

Theorem 2. Let $p \geqq 1$. Suppose that

$$
\begin{aligned}
& a_{n} \geqq-K / n \quad(n=1,2,3, \cdots ; K ; \text { a positive constant }), \\
& \sum_{n=1}^{\infty} a_{n}=+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} a_{n}\left(\frac{\sin n t}{n}\right)^{p} \text { converges in } 0<t<t_{0} .
\end{aligned}
$$

Then

$$
\lim _{t \rightarrow 0} \sum_{n=1}^{\infty} a_{n}\left(\frac{\sin n t}{n t}\right)^{p}=+\infty
$$

§ 4. Concerning the methods $\left(R_{p}\right)$, we have the following theorems.

THEOREM 3. The method $\left(R_{2 p}\right)$ is totally regular.

Proof. The proof is obvious if we use the I. Schur's theorem [1, p. 74]. But we give here a direct proof of the theorem. For the proof, it is sufficient to prove that if $\sum_{n=1}^{\infty} a_{n}=+\infty$, then

$$
F_{2 p}(t)=C_{p}^{-1} t \sum_{n=1}^{\infty} s_{n}\left(\frac{\sin n t}{n t}\right)^{2 p} \rightarrow \infty \quad \text { as } \quad t \rightarrow 0+
$$

Since $\sum_{n=1}^{\infty} a_{n}=+\infty$, for an arbitrary positive number $G$, there exists an integer $N_{0}$ such that

$$
s_{n} \equiv \sum_{k=1}^{n} a_{k} \geqq G \quad \text { when } \quad n \geqq N_{0} .
$$

Now we take an arbitrary sequence $\left\{t_{\nu}\right\}$ such that $t_{\nu} \searrow 0$ as $\nu \rightarrow \infty$. Let $N_{\nu}$ be the greatest integer less than or equal to $\pi / t_{\nu}$. Then we may suppose $N_{\nu}>N_{0}$ for sufficiently large $\nu$. Then we have

$$
\begin{aligned}
F_{2 p}\left(t_{\nu}\right)= & C_{p}^{-1} t_{\nu} \sum_{n=1}^{\infty} s_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{2 p} \geqq C_{p}^{-1} t_{\nu} \sum_{n=1}^{N_{\nu}} s_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{2 p} \\
\geqq & C_{p}^{-1} G t_{\nu} \sum_{n=1}^{N_{\nu}}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{2 p}-C_{p}^{-1} G t_{\nu} \sum_{n=1}^{N_{0}}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{2 p} \\
& +C_{p}^{-1} t_{\nu} \sum_{n=1}^{N_{0}} s_{n}\left(\frac{\sin n t_{\nu}}{n t_{\nu}}\right)^{2 p} \\
\rightarrow & C_{p}^{-1} G \int_{0}^{\pi}\left(\frac{\sin x}{x}\right)^{2 p} d x \quad \text { as } \nu \rightarrow \infty .
\end{aligned}
$$

Since, $G$ is arbitrary, we have

$$
\lim _{t \rightarrow 0} F_{2 p}(t)=+\infty
$$

which is the required result.
Theorem 4. The method ( $R_{2 p+1}$ ) is not totally regular.
Proof. For the proof, using a theorem due to H. Hurwitz [3, Theorem 6], it is sufficient to prove that

$$
\lim _{t \rightarrow 0+} t \sum_{n=1}^{\infty}\left(\left|\frac{\sin n t}{n t}\right|^{2 p+1}-\left(\frac{\sin n t}{n t}\right)^{2 p+1}\right)>0 .
$$

But this is easily proved using the definition of the definite integrals. See, for example, [2, Proof of Lemma 1]. Thus we have Theorem 4.
§5. Let $\alpha$ be a real number such that $-1 \leqq \alpha<p-1$, and let $s_{p}^{\alpha}$ be the Cesàro sum, of order $\alpha$, of a series $\sum_{n=0}^{\infty} \alpha_{n}$ with $\alpha_{0}=0$. If the series in

$$
\sigma(p, \alpha, t)=C_{p, \alpha}^{-1} t^{1+\alpha} \sum_{n=1}^{\infty} s_{n}^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p},
$$

where

$$
C_{p, \alpha}= \begin{cases}\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} u^{\alpha-p} \sin ^{p} u d u, & -1<\alpha<p-1, \\ \pi / 2 & \alpha=-1,\end{cases}
$$

converges in some interval $0<t<t_{0}$ and $\sigma(p, \alpha, t) \rightarrow s$ as $t \rightarrow 0+$, then
the series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable by the Riemann-Cesàro method of order $p$ with index $\alpha$, or shortly, summable ( $R, p, \alpha$ ) to $s$. This method of summation was introduced in my paper [2]. The method ( $R, p, \alpha$ ) is regular when $p \geqq 2$ and $-1 \leqq \alpha<p-1$. Concerning the total regularity, we have the following theorem which is proved by an argument similar to the direct proof of Theorem 3 in $\S 4$.

Theorem 5. The method $(R, 2 p, \alpha)$ is totally regular when $0 \leqq \alpha<2 p-1$.

## References

[1] R. G. Cooke: Infinite Matrices and Sequences Spaces. London (1950).
[2] H. Hirokawa: Riemann-Cesàro methods of summability. Tôhoku Math. Jour., 7, 279-295 (1955).
[3] H. Hurwitz: Total regularity of general transformations. Bull. Amer. Math. Soc., 46, 833-837 (1940).
[4] S. C. Lee: A note on trigonometrical series. Jour. London Math. Soc., 22, 216-219 (1947).

