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140. On Lacunary Fourier Series

By Masako Izumi and Shin-ichi IzumI
Department of Mathematics, Tsing Hua University, Taiwan, China
(Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1965)

Our first theorem is as follows:
Theorem 1. If the function f has the Fourier series

(1) fl@)~ kﬁ(ank CoS W+, $in 1)
=1
where
(2) Nysr— Ny, > ANt (A constant and 0<B=1)

and if f satisfies the a-Lipschitz condition («¢>0) at a point «,, that
is,
[+ 1) —f(wo) | SA|t]* as -0,
then we have
@,,=0@1/n%?), b, =0(1/ng?) (k=1,2, ---).
This is a generalization of theorems of Kennedy [1] and Tomié
[2].
Proof. a) The case 1>a>0. We can suppose that x,=0. Let
C,, be the n,-th complex Fourier coefficient of f, then
cnkziginf(x)e“i”k“dx.
We can suppose that"
(2" N —m, = Anf  and  n,—n,_,=Anf
and then we have

1 i —ing e
c, =%L F @) T (@)™

k

1) If g=1, that is, ng+1/me=2>1, then we can take A=(1—1)/2. In the case
0<p<1, we can suppose that nx+1=2nx. For, if not, that is, if ne+1—nx=A’nf for
a constant A’ and mx+1>2nx, then we insert the term cn e’ with N =g+ A,
then

g —np=A’'nf, 'nk+1—'nkr=('nk+1—nk)—A’n‘,‘;gnk—A’nﬁgA’nﬁ
for large k. If, further, mi+1>2mi, then we insert also the term cn,ve™''® with
i =ne+ A’(ni)B.  Thus proceeding we get the sequence (ny'; v=1,2, ---, j) such
that
N <Ngr <Npgrr < =+ + <n,‘j)<'mc+1
and
me1=2nf, AV =20P0=1,2, -+, 1), nw =<2ms,

ng -2 AP (v=1,2, -+, §-1), mrs1—nl" ZA(n)8, me—mez A'nf.
This procedure is possible for all sufficiently large k. Now, instead of f, consider
the function g(x)=fx)+h(x) where h(@)~X c{¢inrk’s=3 dre'™ *, We can take
(e’) such that h is sufficiently smooth. T‘}'ign g satisfies the condition of f and
the Fourier exponents (mx) of g satisfy (2’) with A=A’/28,
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for all trigonometrical polynomial T, (x) of degree M,<Anf and
with constant term 1. We take T, () as the twice of the Fejér
kernel, that is,

_ _sin® (M, +1)/2
T (@) =2 (0= 0 in w2
Now

Cu,, S flx)Ty, (x)e—mkwdx— -%§_” f<m+ ) TMk<ﬁ7+ . ) —inko g

@) T+ T )TMk<w+%:>]e“’”k“dx

=l
4%8 [ () —f (w-i- )] Ty (®)e " da
+—£ES_”f<x+n—k)|:TMk(w)—— TMk(ernlk)]e—de:HJ

where J=0, since the Fourier exponents of f(¢+x/n,) with non-
vanishing Fourier coefficients are the same as those of f(x) and
trigonometrical polynomial T (%)— Ty (¢+7/n,) does not contain the
constant term and is of order M,. Therefore
6, = :4%8 [f(x)—f(x—l——’r—)]Tuk(x)e“"“k”dx

=_21;S |:f(x) f(ac+ >:|KMk(x)e—‘”k”dx

TR L OIS R

2w \)-s,  Jo
where 0,=1/M,. We have

11250 | 7@ e an | do=0@MD =00 n2)

dx Tde _ A
LIS, ng oSt | G5 st

and I, may be estimated similarly as I,, Thus the theorem is proved.
b) The case «=1. In this case we use the polynomial

T, (@)= @Ko@))' ]| @Kuyi(a))de

instead of the Fejér kernel where [ is a fixed integer depending on
«, then we have
| Ty (x) |SAM, and | Ty, (»)|<A/MP 't

Therefore, in the estimation of I, and I,, « may be greater than or
equal to 1. Thus the theorem holds for any a=1.

Corollary 1. If f satisfies the a-Lipschitz condition at a point
(0<a<1) and f has the Fourier series with the Hadamard gap,
then f belongs to the Lip « class in the interval (0, 27).
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Proof. By our theorem, the n,-th Fourier coefficient of f is of
order O(1/n%) and then
|f@+h)—f@)|=A 32 m*

If h is sufficiently small, then there is'an m such that 1/n,..<|h|=
1/n,. We have

for all « and all h.

sin ln,Jl,
2

Simge sm%nkh g%z’f; nio< Al b nko <Al b |*
and

S o sin Enh | S npt<An;t <A|h e

k=m-+1 2 k=m+1

Hence f belongs to the class Lip « in the whole interval.

Corollary 2. If f satisfies the 1-Lipschitz condition at a point
and f has the Fourier series with the Hadamard gap, then feA,
that is,

fle+h)—2f(x)+f(e—h)=0( h]|) for all x.

Proof is similar as Corollary 1.

Theorem 2. Let f satisfy the condition of Theorem 1 with
0<B<1, then the Fourier series of f converges absolutely when
a>min (1/28, 1/6—1).

Proof. a) Suppose that «>B"'—1. We shall prove that
(8) m;>Bj" for all sufficiently large j, a constant B and for any
v<1/1—pB). If we assume that n,>B-k* for a k and for a B,
0<B<1, then

N1 =N+~ ANt = BlY + ABPESY = B(k* + AKPY)
=Bk +vk*+ ---)=B(k+1)y for kz=k,
where k, is determined independently of B. We can take B, 0<B<1
such that n, =Bk}. Thus we have n;>Bj” for all j=k,. We have
now

glcmgAiigAé

which is finite when aB8y>1. v may be taken so near to 1/(1—5)
such that aBy>1 when a>pF'—1.

b) Suppose that aB>1/2. We suppose that x,=0. Let us put

fi(@)=Ffo+x/dn,)— f(x—n/dn,)
then
fk(x)NZc”j(ei'nj(w+7t/4nj,)_einj(x—fr/w,k)):z,i2 Ca, sin ’Z i T ginje
J Ny

If Ty, (x) is a trigonometrical polynomial of order Anf and with
constant term 1, then the Fourier exponents with non-vanishing
coefficients of Ty (¥)fi(x) in the interval (n,, 2n;) are the same as

2) This is the joint work of Mr. J.A. Chao and us.
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those of f,(x) in the same interval. Thus we have
4 > | Cny |? sin® n;T élg” sz(ﬂﬁ)Tukz(x)dw
nkSanan 4nk T Jer
and hence
1
”lkSananl "3 [2 TS fk?(x) TM,f(w)dw.

We take Ty, (v)=2K, (x), then the right side integral is, except for
a factor 4,

S Fi(@) Ky w)dw= S e +S:Mk +S—wk

1/, —

Inp 2 2 (~
2| " Moo Morapednr 2T A2
o M 1ny, M 2)uu, g
< A
== Mk2a—1 = ,nk(za—na
and then
) l2<_._“_4‘__
SN jS2ng "= /I’Lkma—'l)ﬂ !

Sels3, S e, lsASVE™ 57 e, T

1 2k gn =0k +l 2hgn <okl
o (1—ﬂ)kl2 o 1

E = =43 <o

=i gles—12)k

ll/\

when aB>1/2.
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