168. The Relation between ($\mathrm{N}, \mathrm{p}_{\boldsymbol{n}}$) and (\bar{N}, p_{n}) Summability. II

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjirô Kunugi, m.J.A., Nov. 12, 1965)
§ 1. The present note is a continuation of the previous paper by the author [2]. We suppose, throughout this note, ${ }^{1)}$ that

$$
\begin{gathered}
p_{n}>0, \quad \sum_{n=0}^{\infty} p_{n}=\infty, \\
P_{n}=p_{0}+p_{1}+\cdots+p_{n}, n=0,1, \cdots .
\end{gathered}
$$

The Nörlund transformation (N, p_{n}) is defined as transforming the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{t_{n}\right\}$ by means of the equation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} . \tag{1}
\end{equation*}
$$

As is well known, this transformation is regular if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n}}{P_{n}}=0 . \tag{2}
\end{equation*}
$$

See Hardy [1], p. 64.
The discontinuous Riesz transformation (\bar{N}, p_{n}) is defined as transforming the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{u_{n}\right\}$ by means of the equation

$$
\begin{equation*}
u_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{\nu} \tag{3}
\end{equation*}
$$

This transformation is regular (see Hardy [1], p. 57).
From (1) we see easily

$$
\sum_{\nu=0}^{n} P_{n-\nu} s_{\nu}=\sum_{\nu=0}^{n} P_{\nu} t_{\nu}
$$

Thus we obtain the following
Theorem 1. (N, P_{n}) is equivalent ${ }^{2)}$ to the iteration product $\left(\bar{N}, P_{n}\right) \cdot\left(N, p_{n}\right)$.
§ 2. We shall prove here the following
Theorem 2. If
$\left\{p_{n}\right\}$ is non-increasing, and if

[^0]\[

$$
\begin{equation*}
\frac{p_{n+1}}{p_{n}} \geq \frac{p_{n}}{p_{n-1}}, \quad n=1,2, \cdots, \tag{5}
\end{equation*}
$$

\]

then (N, p_{n}) implies (\bar{N}, p_{n}).
In order to prove the theorem, we require the following
Lemma. If $p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}$ is convergent for $|x|<1$, and if

$$
\begin{array}{ll}
p_{n}>0, & n=0,1, \cdots, \\
\frac{p_{n+1}}{p_{n}} \geq \frac{p_{n}}{p_{n-1}}, & n=1,2, \cdots,
\end{array}
$$

then

$$
\{p(x)\}^{-1}=\frac{1}{p_{0}}+q_{1} x+q_{2} x^{2}+\cdots,
$$

where

$$
\begin{gathered}
q_{n} \leq 0, \quad n=1,2, \cdots, \\
\sum_{n=1}^{\infty}\left|q_{n}\right| \leq \frac{1}{p_{0}} . \\
\text { If } \sum_{n=0}^{\infty} p_{n}=\infty, \text { then } \sum_{n=1}^{\infty}\left|q_{n}\right|=\frac{1}{p_{0}} .
\end{gathered}
$$

For the proof of this lemma, see, e.g., Hardy [1], Theorem 22.
We now give the proof of our theorem. From (4) we see easily that

$$
\lim _{n \rightarrow \infty} \frac{P_{n-1}}{P_{n}}=1
$$

that $\sum_{n=0}^{\infty} P_{n} x^{n}$ is convergent for $|x|<1$, and that $p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}$ also converges for $|x|<1$. Since $p_{0} \neq 0, q(x)=\{p(x)\}^{-1}=\sum_{n=0}^{\infty} q_{n} x^{n}$ has a non-zero radius of convergence. Now the transformation inverse to (1) is

$$
\begin{equation*}
s_{n}=\sum_{k=0}^{n} q_{n-k} P_{k} t_{k} \tag{6}
\end{equation*}
$$

See Kuttner [3]. From (3) and (6) we obtain

$$
\begin{align*}
u_{n} & =\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} \sum_{k=0}^{\nu} q_{\nu-k} P_{k} t_{k} \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n} P_{k} t_{k} \sum_{\nu=0}^{n-k} p_{k+\nu} q_{\nu} \tag{7}\\
& =\sum_{k=0}^{n} b_{n k} t_{k},
\end{align*}
$$

where

$$
b_{n k}=\frac{P_{k}}{P_{n}} \sum_{\nu=0}^{n-k} p_{k+\nu} q_{\nu}
$$

Now if $s_{\nu}=1$ for all ν, then $t_{n}=1, u_{n}=1$ for all n. Hence $\sum_{k=0}^{n} b_{n k}=1$ for all n. Also, since $P_{n} \rightarrow \infty$ and $q_{n} \rightarrow 0$, we see easily
that $b_{n k} \rightarrow 0$ as $n \rightarrow \infty$ for any fixed k. Hence a necessary and sufficient condition for the transformation (7) to be regular is that

$$
\begin{equation*}
\sum_{k=0}^{n}\left|b_{n k}\right|=O(1) \tag{8}
\end{equation*}
$$

Since

$$
\begin{aligned}
b_{n k} & =\frac{P_{k}}{P_{n}}\left(p_{k} q_{0}+p_{k+1} q_{1}+\cdots+p_{n} q_{n-k}\right) \\
& \geq \frac{P_{k}}{P_{n}}\left\{\frac{p_{k}}{p_{0}}-p_{k}\left(\left|q_{1}\right|+\left|q_{2}\right|+\cdots+\left|q_{n-k}\right|\right)\right\} \\
& \geq 0
\end{aligned}
$$

from (4) and the lemma, we get (8).
This proves our assertion.
Combining the last theorem and Theorem 1 of the previous paper
[2], we obtain the following
Theorem 3. If $\left\{p_{n}\right\}$ is non-increasing, and if

$$
\begin{array}{ll}
p_{n} \geq \sigma>0, & n=0,1, \cdots, \\
\frac{p_{n+1}}{p_{n}} \geq \frac{p_{n}}{p_{n-1}}, & n=1,2, \cdots,
\end{array}
$$

then $\left(N, p_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ are equivalent.

References

[1] G. H. Hardy: Divergent Series. Oxford (1949).
[2] K. Ishiguro: The relation between (N, p_{n}) and (\bar{N}, p_{n}) summability. Proc. Japan Acad., 41, 120-122 (1965).
[3] B. Kuttner: The high indices theorem for discontinuous Riesz means. Jour. London Math. Soc., 39, 635-642 (1964).

[^0]: 1) In Lemma, we need not assume $\sum_{n=0}^{\infty} p_{n}=\infty$ generally.
 2) Given two summability methods A, B, we say that A implies B if any series or sequence summable A is summable B to the same sum. We say that A and B are equivalent if A implies B and B implies A.
