164. On the Absolute Cesàro Summability Factors of Fourier Series*)

By Tsai-Sheng Liu
Department of Mathematics, Tsing Hua University, Taiwan (Comm. by Zyoiti Suetuna, m.J.A., Nov. 12, 1965)

1.1. Definition. Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series and s_{n}^{α} be the n-th Cesàro mean of order α of the sequence $\left\{s_{n}\right\}$, where s_{n} is the partial sum of the given series. We say that the series $\sum_{n=0}^{\infty} a_{n}$ is absolutely summable (C, α), or summable $|C, \alpha|$, if the series $\sum_{n=1}^{\infty}\left|s_{n}^{\alpha}-s_{n-1}^{\alpha}\right|$ converges.

A sequence $\left\{\lambda_{n}\right\}$ is said to be convex when $\Delta^{2} \lambda_{n} \geqq 0(n=1,2, \cdots)$, where $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}, \Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)$. It is known ${ }^{1)}$ that if $\left\{\lambda_{n}\right\}$ is a convex sequence and the series $\sum_{n=1}^{\infty} n^{-1} \lambda_{n}$ converges, then λ_{n} is nonnegative and non-increasing.
1.2. Let $f(t)$ be a periodic function with period 2π, and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t)
$$

where $A_{n}(x)=a_{n} \cos n x+b_{n} \sin n x$. Let us put

$$
s_{n}(x)=\sum_{v=1}^{\infty} A_{v}(x), \quad D_{n}(t)=\frac{1}{2}+\sum_{v=1}^{n} \cos n t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}
$$

and $\phi(t)=\phi_{x}(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}$.
1.3. Recently, Pati has proved the following result:

Theorem A. ${ }^{2)}$ If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum_{n=1}^{\infty} n^{-1} \lambda_{n}(\log n)^{\frac{1}{2}}<\infty$, then $\sum_{n=1}^{\infty} \lambda_{n} A_{n}(t)$ is summable $|C, 1|$ at every point $t=x$ at which

[^0]\[

$$
\begin{equation*}
\int_{0}^{t}|\phi(u)| d u=o(t) \tag{1.1}
\end{equation*}
$$

\]

2. The object of this paper is to prove the following two theorems:

Theorem 1. If $\left\{\lambda_{n}\right\}$ is a convex sequence such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda_{n}(\log n)^{\frac{1}{2}(1-\alpha)}}{n}<\infty \quad(0 \leqq \alpha<1) \tag{2.1}
\end{equation*}
$$

then $\sum_{n=1}^{\infty} \lambda_{n} A_{n}(t)$ is summable $|C, 1|$ at every point $t=x$ at which

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t}|\phi(u)| d u=0\left(\frac{t}{\left(\log \frac{1}{t}\right)^{\alpha}}\right), \quad \text { as } \quad t \rightarrow 0 \tag{2.2}
\end{equation*}
$$

In the case $\alpha=0$, we get Theorem A. In the limiting case, $\alpha=1$, we have the following

Theorem 2. If $\left\{\lambda_{n}\right\}$ is a convex sequence such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda_{n}(\log \log n)^{\frac{1}{2}}}{n}<\infty, \tag{2.3}
\end{equation*}
$$

then $\sum_{n=1}^{\infty} \lambda_{n} A_{n}(t)$ is summable $|C, 1|$ at every point $t=x$ at which

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t}|\phi(u)| d u=0\left(\frac{t}{\log \frac{1}{t}}\right), \quad \text { as } \quad t \rightarrow 0 \tag{2.4}
\end{equation*}
$$

3. Proof of Theorem 1. We require the following lemmas:

Lemma $1 .^{3)}$ If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum_{n=1}^{\infty} n^{-1} \lambda_{n}<\infty$ and (1.1) holds, then $\sum_{n=1}^{\infty} \lambda_{n} A_{n}(x)$ is summable $|C, 1|$ if and only if $\sum_{n=1}^{\infty} n^{-1} \lambda_{n}\left|s_{n}(x)-f(x)\right|<\infty$.

Lemma 2. If (2.2) holds, then

$$
\sum_{v=1}^{n}\left(s_{v}(x)-f(x)\right)^{2}=o\left(n(\log n)^{1-\alpha}\right),
$$

and further, by Cauchy's inequality, we have

$$
\sum_{v=1}^{n}\left|s_{v}(x)-f(x)\right|=o\left(n(\log n)^{\frac{1}{2}(1-\alpha)}\right), \quad \text { as } \quad n \rightarrow \infty
$$

Proof. First, under the condition (2.2), we shall estimate the order of the integrals $\int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t$ and $\int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t^{2}} d t$. By integration by parts, we get

$$
\begin{equation*}
\int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t=\left[\frac{\Phi(t)}{t}\right]_{\frac{\pi}{n}}^{\pi}+\int_{\frac{\pi}{n}}^{\pi} \frac{\Phi(t)}{t^{2}} d t \tag{3.1}
\end{equation*}
$$

3) T. Pati [2], Theorem 1.

$$
=O(1)+o\left(\frac{1}{(\log n)^{\alpha}}\right)+o\left(\int_{\frac{\pi}{n} t}^{\pi} \frac{1}{\left(\log \frac{1}{t}\right)^{\alpha}} d t\right)=o\left((\log n)^{1-\alpha}\right) .
$$

$$
\begin{align*}
& \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t^{2}} d t=\left[\frac{\Phi(t)}{t^{2}}\right]_{\frac{\pi}{n}}^{\pi}+2 \int_{\frac{\pi}{n}}^{\pi} \frac{\Phi(t)}{t^{3}} d t \tag{3.2}\\
& \quad=O(1)+o\left(\frac{n}{(\log n)^{\alpha}}\right)+o\left(\int_{\frac{\pi}{n}}^{\pi} \frac{1}{t^{2}\left(\log \frac{1}{t}\right)^{\alpha}} d t\right)=o\left(\frac{n}{(\log n)^{\alpha}}\right)
\end{align*}
$$

Now

$$
\begin{aligned}
& \sum_{v=1}^{n}\left(s_{v}(x)-f(x)\right)^{2}=\sum_{v=1}^{n}\left(\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \frac{\sin v t}{t} d t+o(1)\right)^{2} \\
= & \sum_{v=1}^{n}\left\{\frac{4}{\pi^{2}} \int_{0}^{\pi} \phi(t) \frac{\sin v t}{t} d t \int_{0}^{\pi} \phi(u) \frac{\sin v u}{u} d u+o\left(\int_{0}^{\pi} \phi(t) \frac{\sin v t}{t} d t\right)+o(1)\right\} \\
= & \frac{4}{\pi^{2}} \int_{0}^{\pi} \frac{\phi(t)}{t} d t \int_{0}^{\pi} \frac{\phi(u)}{u}\left(\sum_{v=1}^{n} \sin v t \sin v u\right) d u+o\left(\sum_{v=1}^{n} \int_{0}^{\pi} \phi(t) \frac{\sin v t}{t} d t\right)+o(n) \\
= & I_{1}+o\left(\sqrt{I_{1}}\right)+o(n),
\end{aligned}
$$

where

$$
I_{1}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \frac{\phi(t)}{t} d t \int_{0}^{\pi} \frac{\phi(u)}{u}\left(\sum_{v=1}^{n} \sin v t \sin v u\right) d u .
$$

We shall devide I_{1} into four parts

$$
I_{1}=\frac{4}{\pi^{2}}\left(\int_{0}^{\frac{\pi}{n}} \int_{0}^{\frac{\pi}{n}}+\int_{0}^{\frac{\pi}{n}} \int_{\frac{\pi}{n}}^{\pi}+\int_{\frac{\pi}{n}}^{\pi} \int_{0}^{\frac{\pi}{n}}+\int_{\frac{\pi}{n}}^{\pi} \int_{\frac{\pi}{n}}^{\pi}\right)=J_{1}+J_{2}+J_{3}+J_{4} .
$$

By condition (2.2), we get

$$
\left|J_{1}\right| \leqq \frac{4}{\pi^{2}} \int_{0}^{\frac{\pi}{n}}|\phi(t)| d t \int_{0}^{\frac{\pi}{n}}|\phi(u)|\left(\sum_{v=1}^{n} v^{2}\right) d u=o\left(\frac{n}{(\log n)^{2 \alpha}}\right) .
$$

By (2.2) and (3.1), we get

$$
\begin{aligned}
\left|J_{2}\right| & \leqq \frac{4}{\pi^{2}} \int_{0}^{\frac{\pi}{n}}|\phi(t)| d t \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(u)|}{u}\left(\sum_{v=1}^{n} v\right) d u=o\left(\frac{1}{n(\log n)^{\alpha}}(\log n)^{1-\alpha} n^{2}\right) \\
& =o\left(\frac{n(\log n)^{1-\alpha}}{(\log n)^{\alpha}}\right) .
\end{aligned}
$$

J_{3} is equal to J_{2}. Hence it remains to estimate J_{4} :

$$
\begin{aligned}
J_{4} & =\frac{2}{\pi^{2}} \int_{\frac{\pi}{n}}^{\pi} \frac{\phi(t)}{t} d t \int_{\frac{\pi}{n}}^{\pi} \frac{\phi(u)}{u}\left(\sum_{v=1}^{n}(\cos v(u-t)-\cos v(u+t))\right) d u \\
& =\frac{2}{\pi^{2}} \int_{\frac{\pi}{n}}^{\pi} \frac{\phi(t)}{t} d t \int_{\frac{\pi}{n}}^{\pi} \frac{\phi(u)}{u}\left(D_{n}(u-t)-D_{n}(u+t)\right) d u \\
& =0\left(\int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(u)|}{u} \frac{\left|\sin \left(n+\frac{1}{2}\right)(u-t)\right|}{|u-t|} d u\right)+
\end{aligned}
$$

$$
+o\left(\int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(u)|}{u} \frac{\left|\sin \left(n+\frac{1}{2}\right)(u+t)\right|}{u+t} d u\right)=O\left(J_{4}^{\prime}+J_{4}^{\prime \prime}\right)
$$

Then

$$
\begin{aligned}
J_{4}^{\prime} & =\int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t\left\{\left(\int_{|u-t| \leq \frac{\pi}{2 n}}+\int_{|u-t|>\frac{\pi}{2 n}}\right) \frac{|\phi(u)|}{u} \frac{\left|\sin \left(n+\frac{1}{2}\right)(u-t)\right|}{|u-t|} d u\right\} \\
& =J_{41}^{\prime}+J_{42}^{\prime} .
\end{aligned}
$$

By integration by parts and by (2.2) and (3.1), we get

$$
\begin{aligned}
J_{41}^{\prime} & \leqq\left(n+\frac{1}{2}\right) \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t \int_{t-\frac{\pi}{2 n}}^{t+\frac{\pi}{2 n}|\phi(u)|} \frac{u}{t} d u \\
& \left.=\left(n+\frac{1}{2}\right) \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t\left\{\frac{\left[\Phi\left(t+\frac{\pi}{2 n}\right)\right.}{t+\frac{\pi}{2 n}}-\frac{\Phi\left(t-\frac{\pi}{2 n}\right)}{t-\frac{\pi}{2 n}}\right]+\int_{t-\frac{\pi}{2 n}}^{t+\frac{\pi}{2 n} \Phi(u)} u^{2} d u\right\} \\
& =o\left(n \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t}\left\{\left(\log \left(t+\frac{\pi}{2 n}\right)\right)^{-\alpha}-\left(\log \left(t-\frac{\pi}{2 n}\right)\right)^{-\alpha}\right\} d t\right)+ \\
& +o\left(n \int_{\frac{\pi}{n}}^{\pi}|\phi(t)|\right. \\
& =o\left(n(\log n)^{1-\alpha}\right),
\end{aligned}
$$

further,

$$
J_{42}^{\prime} \leqq\left(\int_{\frac{\pi}{n}}^{\pi-\frac{\pi}{2 n}} \int_{t+\frac{\pi}{2 n}}^{\pi}+\int_{\frac{\pi}{n}+\frac{\pi}{2 n}}^{\pi} \int_{\frac{\pi}{n}}^{t-\frac{\pi}{2 n}}\right) \frac{|\phi(t)|}{t} \frac{|\phi(u)|}{u|u-t|} d t d u=J_{421}^{\prime}+J_{422}^{\prime}
$$

By integration by parts and by (2.2) and (3.1), we get

$$
\begin{aligned}
J_{421}^{\prime} & =\int_{\frac{\pi}{n}}^{\pi-\frac{\pi}{2 n}} \frac{|\phi(t)|}{t} d t\left\{\left[\frac{\Phi(u)}{u|u-t|}\right]_{t+\frac{\pi}{2 n}}^{\pi}-\int_{t+\frac{\pi}{2 n}}^{\pi} \frac{\Phi(u)}{u^{2}(u-t)^{2}}(2 u-t) d u\right\} \\
& =\frac{\Phi(\pi)}{\pi} \int_{\frac{\pi}{n}}^{\pi-\frac{\pi}{2 n}} \frac{|\phi(t)|}{t(\pi-t)} d t+o\left(n \int_{\frac{\pi}{n}}^{\pi-\frac{\pi}{2 n}} \frac{\phi(t)}{t\left(\log \frac{1}{t+\frac{\pi}{2 n}}\right)^{\alpha}} d t\right) \\
& +o\left(\int_{\frac{\pi}{n}}^{\pi-\frac{\pi}{2 n}} \frac{|\phi(t)|}{t} d t\left(\int_{t+\frac{\pi}{2 n}}^{\pi} \frac{2 u-t}{u(u-t)^{2}\left(\log \frac{1}{u}\right)^{\alpha}} d u\right)\right)=o\left(n(\log n)^{1-\alpha}\right)
\end{aligned}
$$

J_{422}^{\prime} is equal to $J_{421}^{\prime} \cdot \quad B y(3.1)$ and (3.2)

$$
J_{4}^{\prime \prime} \leqq \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(t)|}{t} d t \int_{\frac{\pi}{n}}^{\pi} \frac{|\phi(u)|}{u^{2}} d u=o\left((\log n)^{1-\alpha} \frac{n}{(\log n)^{\alpha}}\right) .
$$

Thus we get the conclusion

$$
\sum_{v=1}^{n}\left(s_{v}(x)-f(x)\right)^{2}=o\left(n(\log n)^{1-\alpha}\right)
$$

Lemma 3.4) If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum_{n=1}^{\infty} n^{-1} \lambda_{n}<\infty$, then

$$
\sum_{n=1}^{m} \log (n+1) \Delta \lambda_{n}=O(1),
$$

as $m \rightarrow \infty$, and $\lambda_{m} \log m=o(1)$, as $m \rightarrow \infty$.
We shall now proceed to prove Theorem 1.
By Lemma 1, it is enough to prove that

$$
\sum_{n=1}^{\infty} n^{-1} \lambda_{n}\left|s_{n}(x)-f(x)\right|<\infty .
$$

By Abel's transformation, ${ }^{5)}$

$$
\begin{aligned}
& \sum_{v=1}^{n} v^{-1} \lambda_{v}\left|s_{v}(x)-f(x)\right| \\
& \quad=n^{-1} \lambda_{n} \sum_{v=1}^{n}\left|s_{v}(x)-f(x)\right|+\sum_{v=1}^{n-1} \Lambda\left(v^{-1} \lambda_{v}\right) \sum_{\mu=1}^{v}\left|s_{\mu}(x)-f(x)\right| \\
& \quad=n^{-1} \lambda_{n} \sum_{v=1}^{n}\left|s_{v}(x)-f(x)\right|+\sum_{v=1}^{n-1} \frac{\lambda_{v}}{v(v+1)} \sum_{\mu=1}^{v}\left|s_{\mu}(x)-f(x)\right|+ \\
& \quad+\sum_{v=1}^{n-1} \frac{\Delta \lambda_{v}}{v+1} \sum_{\mu=1}^{v}\left|s_{\mu}(x)-f(x)\right|=o\left(\lambda_{n}(\log n)^{\frac{1}{2}(1-\alpha)}\right) \\
& \quad+o\left(\sum_{v=1}^{n-1} v^{-1} \lambda_{v}(\log v)^{\frac{1}{2}(1-\alpha)}\right)+o\left(\sum_{v=1}^{n-1} \Delta \lambda_{v}(\log v)^{\frac{1}{2}(1-\alpha)}\right)
\end{aligned}
$$

by Lemma 2, and then, by our hypothesis and Lemma 3,

$$
\sum_{v=1}^{n} v^{-1} \lambda_{v}\left|s_{v}(x)-f(x)\right|=o(1)
$$

as $n \rightarrow \infty$.
4. Proof of Theorem 2. For the proof of Theorem 2, we need Lemma 1, Lemma 3, and the following

Lemma 4. If (2.4) holds, then

$$
\sum_{v=1}^{n}\left(s_{v}(x)-f(x)\right)^{2}=o(n \log \log n)
$$

and further, by Cauchy's inequality, we have

$$
\sum_{v=1}^{n}\left|s_{v}(x)-f(x)\right|=o\left(n(\log \log n)^{\frac{1}{2}}\right), \quad \text { as } \quad n \rightarrow \infty
$$

This lemma can be proved by the same idea as in the proof of Lemma 2.

We shall now prove Theorem 2. By Lemma 1, it is sufficient to prove that

$$
\sum_{n=1}^{\infty} n^{-1} \lambda_{n}\left|s_{n}(x)-f(x)\right|<\infty .
$$

By Abel's transformation, we have

$$
\sum_{v=1}^{n} v^{-1} \lambda_{v}\left|s_{v}(x)-f(x)\right|
$$

4) T. Pati [2], Lemma 3.
5) Cf. Pati [2].
$=\sum_{v=1}^{n-1} \Delta\left(v^{-1} \lambda_{v}\right) \sum_{\mu=1}^{v}\left|s_{\mu}(x)-f(x)\right|+n^{-1} \lambda_{n} \sum_{v=1}^{n}\left|s_{v}(x)-f(x)\right|$
$=\sum_{v=1}^{n-1} \frac{\lambda_{v}}{v(v+1)} \sum_{\mu=1}^{v}\left|s_{\mu}(x)-f(x)\right|+\sum_{v=1}^{n=1} \frac{\Delta \lambda_{v}}{v+1} \sum_{\mu=1}^{v}\left|s_{\mu}(x)-f(x)\right|$
$+n^{-1} \lambda_{n} \sum_{v=1}^{n}\left|s_{v}(x)-f(x)\right|=o\left(\sum_{v=1}^{n-1} \frac{\lambda_{v}}{v}(\log \log v)^{\frac{1}{2}}\right)+o\left(\sum_{v=1}^{n-1} \Delta \lambda_{v}(\log \log v)^{\frac{1}{2}}\right)$
$+o\left(\lambda_{n}(\log \log n)^{\frac{1}{2}}\right)($ by lemma 4)
$=o(1)$,
as $n \rightarrow \infty$, by our hypothesis and Lemma 3 .

References

[1] H. C. Chow: On the summability factors of Fourier Series. Jour. of London Math. Soc. (3), 16, 215-220 (1941).
[2] T. Pati: On an unsolved problem in the theory of absolute summability factors of Fourier series. Mathematische Zeitschrift, 82, 106-114 (1963).

[^0]: *) This paper is a part of the Thesis for Master at the Tsing Hua University, 1965. This was directed by Profs. S. M. Lee and S. Izumi whom the author expresses his hearty thanks. He also expresses his warmest thanks to Mrs. M. Izumi.

 1) H. C. Chow [1], Lemma 4.
 2) T. Pati [2], Theorem 2.
