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We next discuss the case where the ordinary part of T(2) is a
polynomial of degree d.

Theorem 52. Let T() and a be the same notations as before;
let the ordinary part R() of T(2) be a polynomial in 2 of degree d;
let c be any finite complex number; let n(p, c) denote the number
of all the c-points, with due count of multiplicity, of T(2) in the
domain z/{ pl ]} with ap let e denote the coefficient
of ,V in the expansion of R(); let

let

and let

m(p, c)- - T(pe-), c dt

m(, c)- lim ma(p, c)(- log /1+]c ]).

Then the equality
1 I VI+] T(pe-t)] dtN(p, c)/ ma(p, c)-m(, c)/ log e I- -0

log

holds for every finite value c and every p with a(p( and both
the left and right sides of this equality converge to log]e[ as p
becomes infinite.

d

Proof. Suppose that R(2)- eft, (e0), and consider the

function g(2) defined by

g(2)-- p
e (2-- 0).

d +Then g()- efl-’+ ’_ -c2 where C_, C_, C_,
=0 =1

are the coefficients stated at the beginning of the proof of Theorem

47, and g(2)is regular in the closed domain {2" 0.]}. If we

now denote all the zeros, repeated according to the respective orders,
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of g(2)in the domain " 0<1[<--[ by a,a,,...,a,l,, then all the

c-points, repeated according to the respective orders, of T(2) in the
domain {" p(] <} are given by a, a;, ..., a;o. By making
use of Jensen’s theorem for g(2), we have

log g e dt (a<p<),log g(0) + log
aa a() p( 2

where it is easily verified that

c)_ n(r, c) drN(p

log aa;""
n(P)

Thus we obtain
1 0log] T(pe-t)-C(pe_) dt (<p<)log e ]+ N(p, c)-

and there is no difficulty in showing from this result that the desired
equality in the statement of the present theorem holds for every
finite value c every p with a<p< . Since, in addition,

T(pe-) 1 T(pe-t)+ levi

it is at once obvious that both the left and right sides of that
desired equality converge to log]ea] as p becomes infinite.

The proof of the theorem is thus complete.
Theorem 53. Let T() and a be the same notations as before; let

the ordinary part of T() be a polynomial in 2 of degree d; and let

gt.

Then T(p) is not only a monotone decreasing function of p
but also a convex function of log p in the interval

Proof. By virtue of Theorem 52, we have
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we obtain therefore T[(p)--- Se(p) <0 for every p with a<p<
P

Since, in addition, T(p)-- log e (P-- oo), we have

P
and (P) -S(p)p, where S(p) is a monotone decreasinff

d(loff p)
function of p in he oen interval (a, ) as will be seen from

dT(p)definition of n(p, c). Hence 0 for every p e (a, ).
d(log p)

With these results, the theorem has been proved.
We can decide by T() itself whether its ordinary part is a

constant or a polynomial.
Remark A. A necessary and sufficient condition that the ordi-

nary part R(a) of the function T(a) treated above be a constant
(inclusive of 0) is that the equality

1 - T(a)_ da- (a< p< )
2i = a-z

be valid for every z inside the circle ]=p, positively oriented
[cf. Proc. Japan Acad., 40 (7), 492-497 (1964)].

Remark B. A necessary and sufficient condition that R() be a

polynomial of degree d is that. T(a) tend to a non-zero finite value

when al [cf. Proc. Japan Acad., 40 (8), 654-659 (1964).
Theorem 54. If, in Theorem 58, for any large positive number

G there exist a positive constant p in a bounded open interval
(a, 1), (a</<), and a set Aee, with positive measure m, of
angles such that the inequality IT(pee-O) l>G holds for every
e Aee and that inf me> 0, then, for uncountably many complex

G

numbers {c} chosen suitably, T() has a denumerably infinite number
of c-points ,{(- l, 2, 8, ...), repeated according to the respective
orders, in the domain 2{a:a< ]a[ < } such that any accumulation
point of them lies on the circle I]=a and that the positive series

(I bl -) is divergent
=1

Proof. Since, as we have already proved in Theorem 44, the
maximum modulus M(p) of T(a) on the circle p with a<p<
becomes infinite as p tends to a, and since T(a) is regular in the
domain defined above, there exist for any large G(>0) a positive
constant pe in (a, l) and a set Ae%, with positive measure m, of
angles such that the inequality
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1 log T/l+ T(Pee-) dt > log /1+
27r

holds, however large G may be; and moreover, by hypothesis, there
exists some positive constant K such that me>__K, no matter how
large G may be. As a result, we find that T(p)-- (p--a). Applying
this result to the equality established at the beginning of the proof
of Theorem 53, it is easily showm that

l f iN(p, c)dw(c) (p--a).

In consequence, there exists at least one finite value c such that
h(c)h(c)

N(p, c)- log : "()I

log 1+ (pa),

where ( ( and denote all the e-oints, repeated aeeording
to the respective orders, of T() in the domain 2{:p< {
with ap<. Since, in addition, we can choose a system of open
domains {,},=,, with v,+e,+c, such that , does not
converge to a point when , the statement of the present
theorem follows at once from the result just established and the
regularity of T() in

Theorem 55. Even if the ordinary part of T() is a constant
(inclusive of 0), the same result as that stated in Theorem 54 is
also valid under the above-mentioned hypothesis concerning

Proof. By making use of the same reasoning as that applied
to prove Theorem 54 and of Theorems 43, 46, 47, 49, and 50, we can
easily show the validity of the present theorem.


