194. On Near-algebras of Mappings on Banach Spaces

By Sadayuki YAMAMURO

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

1. A real vector space \mathcal{A} is called a *near-algebra* if, for any pair of elements f and g in \mathcal{A} , the product fg is defined and satisfies the following two conditions:

(1) (fg)h=f(gh); (2) (f+g)h=fh+gh.

The left distributive law: h(f+g)=hf+hg is not assumed. Therefore, a near-algebra is a near-ring which has firstly been defined by [4, pp. 71-74].

A subset I of a near-algebra \mathcal{A} is called an *ideal* if (1) I is a linear subset of \mathcal{A} ; (2) $f \in I$, $g \in \mathcal{A}$ imply $fg, gf \in I$.

Let *E* be a real Banach space. Let *f* and *g* are mappings of *E* into *E*. We define the linear combination $\alpha f + \beta g$ (α and β are real numbers) by

 $(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$ for every $x \in E$, and the product fg by

(fg)(x) = f[g(x)] for every $x \in E$.

Let \mathcal{A} be a near-algebra whose elements are mappings of E into E. If \mathcal{A} contains the Banach algebra L of all bounded linear mappings of E into E (the norm of L is $||l|| = \sup_{||x|| \leq 1} ||l(x)||$ for $l \in L$), then, for any ideal I of \mathcal{A} , the set

 $I(L) = I \cap L$

is an ideal of the Banach algebra L.

Examples. Let B be the near-algebra of all bounded (i.e., transforms every bounded set into a bounded set) and continuous mappings. The following subsets are ideals (cf. [3]).

1. The set I(E) of all constant mappings, in other words, I(E) is the set of all mappings $C_a(a \in E)$ such that $C_a(x) = a$ for every $x \in E$.

2. The set C of all compact (i.e., transfroms every bounded set into a compact set) and continuous mappings.

3. The set EB of all entirely bounded (i.e., transforms the space E into a bounded set) and continuous mappings.

It is obvious that B contains L and

 $I(E) \cap L = EB \cap L = 0$ (zero-ideal of L);

 $C \cap L = CL$ (the set of all compact continuous linear mappings on E).

2. A mapping f of E into E is said to be (Fréchet) differ-

S. YAMAMURO

entiable at $a \in E$ if there exists a mapping $l \in L$ such that

f(a+x)-f(a)=l(x)+r(a, x) for every $x \in E$

where $\lim_{||x||\to 0} \frac{r(a, x)}{||x||} = 0.$

This mapping l depends an a and denoted by f'(a).

It is evident that every $l \in L$ is differentiable at every point of E and l'(a) = l for every $a \in E$.

Let \mathcal{A} be a near-algebra whose elements are differentiable at every point of E. An ideal I of \mathcal{A} is called a *d*-ideal if it satisfies the following conditions:

 $f \in I$ if and only if $f'(x) \in I$ for every $x \in E$. When $\mathcal{A} = L$, every ideal of \mathcal{A} is obviously a d-ideal.

Let us assume that \mathcal{A} contains L. Then, the following lemmas can be proved easily.

Lemma 1. Let I_1 and I_2 be d-ideals of A. Then,

(1) $I_1(L) = I_2(L)$ implies $I_1 = I_2$;

(2) $I_1(L) \subsetneq I_2(L)$ implies $I_1 \subsetneq I_2$.

Lemma 2. If I is a d-ideal such that $L \subset I$, then $I = \mathcal{A}$.

3. A mapping f of E into E is said to be compactly differentiable if it is differentiable at every point and the mapping f'of E into L is compact. The set of all compactly differentiable mappings of E into E is denoted by D_c .

Lemma 3. (1) $L \subset D_c$; (2) $D_c \subset B$; (3) D_c is a near-algebra.

Proof. (1) Since, for $l \in L$, l'(x) = l for every $x \in E$, the image l'(E) is a one-point-set of L.

(2) For the set $Br = \{x \in E \mid ||x|| \leq r\}$, since f' is a bounded mapping of E into L, there exists $\alpha > 0$ such that

 $||f'(x)|| \leq \alpha$ for every $x \in Br$.

Then, by [2, p. 37, Lemma 3.3], we have

 $||f(x)-f(0)|| \leq \alpha r$ for every $x \in Br$.

Therefore, f transforms every bounded set into a bounded set. The continuity of f follows from the differentiability.

(3) We have only to prove that $fg \in D_c$ if f and g are in D_c . Since (fg)'(x) = f'[g(x)]g'(x) for every $x \in E$ (cf. [2, p. 41]), for any sequence $\{y_n\} \subset (fg)'(B_r)$, there exists a sequence $\{x_n\}$ such that

 $y_n = f'[g(x_n)]g'(x_n)$ and $x_n \in B_r$ $(n=1, 2, \dots)$.

Since g' is compact, there exists a subsequence $\{x_k\}$ of $\{x_n\}$ such that $g'(x_k) \rightarrow l_1 \in L$ in L. Since the sequence $\{g(x_k)\}$ is bounded by (2) above, there exists a subsequence $\{x_i\}$ of $\{x_k\}$ such that $f'[g(x_i)] \rightarrow l_2 \in L$ in L. Therefore, in the Banach algebra L, the sequence $\{f'[g(x_i)]g'(x_i)\}$ converges to $l_2l_1 \in L$.

In this near-algebra D_{e} , we firstly characterize the set I(E).

Theorem 1. (1) I(E) is a d-ideal of D_c ;

(2) For any non-zero ideal I of D_c , $I(E) \subset I$.

Proof. (1) Since $C'_a(x)=0$ for every $x \in E$, $I(E) \subset D_c$. Moreover, since

 $\alpha C_a + \beta C_b = C_{\alpha a + \beta b}$ and $C_a f = C_a$ for every $f \in D_o$, I(E) is obviously an ideal of D_o . Therefore, we have only to prove that I(E) is a d-ideal.

(i) If $f \in I(E)$, then $f'(x) = 0 \in I(E)$ for every $x \in E$.

(ii) If $f'(x) \in I(E)$ for every $x \in E$, then f'(x)=0 for every $x \in E$. In fact, if $f'(a) \neq 0$, for an element b such that $f'(a)(b) \neq 0$, we have $f'(a)(b) \neq f'(a)(2b)$, which means that $f'(a) \notin I(E)$. Therefore, $f \in I(E)$.

(2) Let $f \in I$ be an arbitrary non-zero element. Then, $C_a = C_a f \in I$ for every $a \in E$, i.e., $I(E) \subset I$.

Secondly, we characterize the set $I(C) = C \cap D_c$ of all compact mappings which are compactly differentiable at every point.

Theorem 3. (1) I(C) is a proper d-ideal of D_c ;

(2) For any d-ideal I of D_c , if $CL \subset I$, then $I(C) \subset I$. When E is a separable Hilbert space,

(3) For any proper d-ideal I of D_c , we have $I \subset I(C)$.

Proof. (1) Since C and D_e are linear, I(C) is obviously linear. Assume that $f \in I(C)$ and $g \in D_e$. By Lemma 3, fg and gf belong to D_e . Moreover, for a bounded set B, g(B) is bounded by Lemma 3 and f(B) is contained in a compact set. Therefore, f[g(B)] and g[f(B)] are contained in compact sets, which means that fg and gf belong to I(C). Finally, we prove that I(C) is a d-ideal. If $f \in I(C)$, then $f'(x) \in L$ is compact and continuous for every $x \in E$ (cf. [2, p. 51, Theorem 4.7]), which means that $f'(x) \in I(C)$ for every $x \in E$, then by [2, p. 51, Theorem 4.8], we have $f \in I(C)$.

(2) For any $f \in I(C)$, $f'(x) \in CL$ for every $x \in E$, hence it follows that $f'(x) \in I$ for every $x \in E$. Since I is a d-ideal, $f \in I$.

(3) Let I be a proper d-ideal of D_c . $I(L)=I\cap L$ is an ideal of L. Then, as Calkin has proved in [1], we have either I(L)=L or $I(L)\subset CL$. If I(L)=L, then $L\subset I$. By Lemma 2, we have $I=D_c$, which shows that I is not proper. If $I(L)\subset CL$, then $I\cap L\subset CL=C\cap L=I(C)\cap L$.

Therefore, by Lemma 1, we have $I \subset I(C)$.

References

[1] J. W. Calkin: Two-sided ideals and congruences in the ring of bounded operators in Hilbert spaces. Ann. of Math., 42, 839-873 (1941).

No. 10]

- [2] M. M. Vainberg: Variational methods for the study of non-linear operators (translated by A. Feinstein). Holden-Day Series in Mathematical Physics, 1964.
- [3] S. Yamamuro: On the spaces of mappings on Banach spaces (to appear).
- [4] H. Zassenhaus: Lehrbuch der Gruppentheorie (1937).