3. A Remark on a Periodic Boundary Problem of Parabolic Type

By Takaŝi Kusano
Chuo University, Tokyo

(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1966)
Let $Q=\left\{(t, x):-\infty<t<+\infty, x=\left(x_{1}, \cdots, x_{n}\right) \in \Omega\right\}$ and $\partial Q=\{(t, x)$: $-\infty<t<+\infty, x \in \partial \Omega\}$, where Ω is a bounded domain in euclidean n-space E^{n} with boundary $\partial \Omega$. Let there be given the system of semilinear parabolic equations
(1) $\quad \mathcal{L}_{i}\left(u_{i}\right)=f_{i}\left(t, x, u_{1}, \cdots, u_{N}\right) \quad$ in $Q \quad(i=1, \cdots, N)$
and the boundary condition

$$
\begin{equation*}
u_{i}=\varphi_{i}(t, x) \quad \text { on } \quad \partial Q \quad(i=1, \cdots, N), \tag{2}
\end{equation*}
$$

where

$$
\mathcal{L}_{i}=\frac{\partial}{\partial t}-\sum_{p, q=1}^{n} \frac{\partial}{\partial x_{p}} a_{p q}^{i}(t, x) \frac{\partial}{\partial x_{q}}+\sum_{p=1}^{n} b_{p}^{i}(t, x) \frac{\partial}{\partial x_{p}}
$$

and the functions $a_{p q}^{i}, b_{p}^{i}, f_{i}$, and $\varphi_{i}(p, q=1, \cdots, n ; i=1, \cdots, N)$ are periodic in t with period $T(T>0)$. In the present note we shall be concerned with the problem of finding a solution, periodic in t with period T, to the boundary problem (1), (2) which will be called the first periodic boundary problem of parabolic type.

We introduce the following assumptions:*)
I. There is a positive constant λ snch that, for any real vector ξ and for all $(t, x) \in \bar{Q}$,

$$
\sum_{p, q=1}^{n} a_{p q}^{i}(t, x) \xi_{p} \xi_{q} \geqq \lambda \sum_{p=1}^{n} \xi_{p}^{2} \quad(i=1, \cdots, N)
$$

II. $a_{p q}^{i} \in C^{1+\alpha}(\bar{Q})$ and $\quad b_{p}^{i} \in C^{\alpha}(\bar{Q}) \quad(0<\alpha<1) \quad(p, q=1, \cdots, n$; $i=1, \cdots, N)$.
III. The functions $f_{i}\left(t, x, z_{1}, \cdots, z_{N}\right)(i=1, \cdots, N)$ are defined in $\mathscr{D}=\left\{\left(t, x, z_{1}, \cdots, z_{N}\right):(t, x) \in \bar{Q},-\infty<z_{k}<+\infty, k=1, \cdots, N\right\}$, are in $C^{\alpha}(\bar{Q})$ for each fixed $\left(z_{1}, \cdots, z_{N}\right)$, and satisfy the Lipschitz condition $\left|f_{i}\left(t, x, z_{1}, \cdots, z_{N}\right)-f_{i}\left(t, x, \bar{z}_{1}, \cdots, \bar{z}_{N}\right)\right| \leqq l_{i} \sum_{p=1}^{n}\left|z_{p}-\bar{z}_{p}\right| \quad(i=1, \cdots, N)$. Moreover, the system $\left\{f_{i}\right\}$ is quasi-monotone increasing in z_{1}, \cdots, z_{N}; that is, for each i and for $z_{k} \leqq \bar{z}_{k}(k=1, \cdots, N), z_{i}=\bar{z}_{i}$, the inequality

$$
f_{i}\left(t, x, z_{1}, \cdots, z_{N}\right) \leqq f_{i}\left(t, x, \bar{z}_{1}, \cdots, \bar{z}_{N}\right)
$$

holds.
IV. $\Omega \in A^{2+\alpha} ; \quad \varphi_{i} \in C^{2+\alpha}(\partial Q)$.
V. There exist functions $\underline{\omega}_{i}(t, x), \bar{\omega}_{i}(t, x)\left(\underline{\omega}_{i} \leqq \bar{\omega}_{i}\right)$ in $C^{\alpha}(\bar{Q})$

[^0]which are periodic in t with period T and satisfy the following inequalities:
\[

$$
\begin{align*}
& \mathcal{L}_{i}\left(\underline{\omega}_{i}\right) \leqq f_{i}\left(t, x, \underline{\omega}_{1}, \cdots, \underline{\omega}_{N}\right) \text { in } \quad Q \\
& \mathcal{L}_{i}\left(\bar{\omega}_{i}\right) \geqq f_{i}\left(t, x, \bar{\omega}_{1}, \cdots, \bar{\omega}_{N}\right) \text { in } Q \tag{3}\\
& \underline{\omega}_{i}(t, x) \leqq \varphi_{i}(t, x) \leqq \bar{\omega}_{i}(t, x) \text { on } \partial Q \quad(i=1, \cdots, N) .
\end{align*}
$$
\]

Theorem. Under Assumptions I-V there exists a solution, periodic in t with period T, to the periodic boundary problem (1), (2).

Proof. We proceed by arguments used in our previous papers [3, 4]. (See also Brzychezy [1]). Let us construct the sequence of systems of functions $\left\{v_{i}^{(m)}(t, x)\right\} \quad(i=1, \cdots, N), m=0,1,2, \cdots$, by determining successively the solutions, periodic in t with period T, of the following linear parabolic equations

$$
\begin{equation*}
\Lambda_{i}\left(v_{i}^{(m)}\right) \equiv \mathcal{L}_{i}\left(v_{i}^{(m)}\right)+l_{i} v_{i}^{(m)}=f_{i}^{(m-1)}(t, x) \quad \text { in } \quad Q \tag{4}
\end{equation*}
$$

satisfying the boundary condition (2), where we have set

$$
\begin{aligned}
& f_{i}^{(m-1)}(t, x) \equiv f_{i}\left(t, x, v_{1}^{(m-1)}, \cdots, v_{N}^{(m-1)}\right)+l_{i} v_{i}^{(m-1)} \\
& v_{i}^{(0)}(t, x) \equiv \bar{\omega}_{i}(t, x) \quad(i=1, \cdots, N ; m=1,2, \cdots) .
\end{aligned}
$$

The existence and the uniqueness of such solutions $v_{i}^{(m)}$ follow from the theorems of Fife [2] and Shmulev [6].

It can be proved that the inequalities

$$
\underline{\omega}_{i}(t, x) \leqq v_{i}^{(m)}(t, x) \leqq v_{i}^{(m-1)}(t, x) \leqq \bar{\omega}_{i}(t, x) \quad(i=1, \cdots, N)
$$

hold in \bar{Q} for all $m=1,2, \cdots$. Indeed, noting that

$$
\Lambda_{i}\left(\bar{\omega}_{i}-v_{i}^{(1)}\right) \geqq 0 \text { in } Q \text { and } \bar{\omega}_{i}-v_{i}^{(1)} \geqq 0 \text { on } \partial Q \quad(i=1, \cdots, N)
$$

and applying the maximum principle [4], we get

$$
v_{i}^{(1)}(t, x) \leqq \bar{\omega}_{i}(t, x) \quad \text { in } \quad \bar{Q} \quad(i=1, \cdots, N)
$$

We observe that

$$
\begin{gather*}
\Lambda_{i}\left(v_{i}^{(1)}-\underline{\omega}_{i}\right) \geqq\left[f_{i}\left(t, x, \bar{\omega}_{1}, \cdots, \underline{\omega}_{i}, \cdots, \bar{\omega}_{N}\right)-f_{i}\left(t, x, \underline{\omega}_{1}, \cdots, \underline{\omega}_{N}\right)\right] \\
+\left[f_{i}\left(t, x, \bar{\omega}_{1}, \cdots, \bar{\omega}_{N}\right)-f_{i}\left(t, x, \bar{\omega}_{1}, \cdots, \underline{\omega}_{i}, \cdots, \bar{\omega}_{N}\right)\right. \tag{6}\\
\left.\quad+l_{i}\left(\bar{\omega}_{i}-\underline{\omega}_{i}\right)\right] \text { in } Q, \\
v_{i}^{(1)}-\underline{\omega}_{i} \geqq 0 \quad \text { on } \quad \partial Q \quad(i=1, \cdots, N) .
\end{gather*}
$$

Since the right-hand side of (6) is non-negative by virtue of the quasimonotony and the Lipschitz continuity of f_{i} and in view of (3), it follows from the maximum principle that

$$
\underline{\omega}_{i}(t, x) \leqq v_{i}^{(1)}(t, x) \quad \text { in } \quad \bar{Q} \quad(i=1, \cdots, N) .
$$

The proof of (5) for general m is similar. Thus, the sequence $\left\{v_{i}^{(m)}\right\}$ is uniformly bounded and monotone non-increasing for each i.

Applying the theorem of Ladyzhenskaia-Ural'tseva [5] to (4), (2), we find that $v_{i}^{(m)} \in C^{\beta}(\bar{Q})$ for some $\beta(0<\beta<1)$ and that
$\left|v_{i}^{(m)}\right|_{\beta} \leqq$ constant independent of $m \quad(i=1, \cdots, N)$.
Consequently, by the theorem of Shmulev [6], we obtain

$$
\left|v_{i}^{(m)}\right|_{2+\alpha \beta} \leqq \text { const }\left(\left|f_{i}^{(m-1)}\right|_{\alpha \beta}+\left|\varphi_{i}\right|_{2+\alpha}\right) \quad(i=1, \cdots, N),
$$

the right-hand side of which is bounded by a constant independent
of m. It is now easy to conclude that the limit functions

$$
v_{i}(t, x)=\lim _{m \rightarrow \infty} v_{i}^{(m)}(t, x) \quad(i=1, \cdots, N)
$$

constitute the periodic solution sought to the boundary problem (1), (2). The proof is thus completed.

Remark 1. If all the $a_{p q}^{i}, b_{p}^{i}, f_{i}$, and φ_{i} are time-independent, then so is the solution. Therefore, the elliptic boundary problem

$$
\begin{gathered}
-\sum_{p, q=1}^{n} \frac{\partial}{\partial x_{p}} a_{p q}^{i}(x) \frac{\partial u_{i}}{\partial x_{q}}+\sum_{p=1}^{n} b_{p}^{i}(x) \frac{\partial u_{i}}{\partial x_{p}}=f_{i}\left(x, u_{1}, \cdots, u_{N}\right) \text { in } \Omega, \\
u_{i}=\varphi_{i}(x) \text { on } \quad \partial \Omega \quad(i=1, \cdots, N)
\end{gathered}
$$

may be regarded as a special case of the periodic boundary problem of parabolic type (1), (2).

Remark 2. i) If $z_{i} f_{i}\left(t, x, z_{1}, \cdots, z_{N}\right) \leqq-a_{i}^{0} z_{i}^{2}+a_{i}^{1}, a_{i}^{0}>0$ and $a_{i}^{1} \geqq 0$ being constants $(i=1, \cdots, N)$, then the functions $\underline{\omega}_{i}$ and $\bar{\omega}_{i}$ defined by

$$
\bar{\omega}_{i}(t, x) \equiv-\underline{\omega}_{i}(t, x) \equiv \mathrm{const}>\max \left\{\sup _{\partial Q}\left|\varphi_{i}\right|, \quad \sqrt{a_{i}^{1} / a_{i}^{0}}\right\} \quad(i=1, \cdots, N)
$$

satisfy Assumption V.
ii) If f_{i} are bounded in $\mathscr{D}\left(\left|f_{i}\right| \leqq M_{i}\right)$, then the periodic solution (period T) to the boundary problem
$\mathcal{L}_{i}\left(u_{i}\right)=M_{i}\left[-M_{i}\right]$ in Q and $u_{i}=\Phi_{i}\left[-\Phi_{i}\right]$ on $\partial Q \quad(i=1, \cdots, N)$, where $\Phi_{i}=$ const $>\sup _{\partial Q}\left|\varphi_{i}\right|$, plays the part of $\left\{\bar{\omega}_{i}(t, x)\right\}\left[\left\{\underline{\omega}_{i}(t, x)\right\}\right]$ in Assumption V.

References

[1] S. Brzychczy: Extension of Chaplighin's method to the system of non-linear parabolic equations in an unbounded domain. Bull. Acad. Polon. Sci. sér. sci. math., astron. et phys., 13, 27-30 (1965).
[2] P. Fife: Solutions of parabolic boundary problems existing for all time. Arch. Rat. Mech. Anal., 16, 155-186 (1964),
[3] T. Kusano: On the first boundary problem for quasilinear systems of parabolic differential equations in non-cylindrical domains. Funkcialaj Ekvacioj, 7, 103-118 (1965).
[4] -: Periodic solutions of a parabolic partial differential equation (Japanese) (to appear).
[5] O. A. Ladyzhenakaia and N. N. Ural'tseva: Boundary problems for linear and quasilinear parabolic equations, I (Russian). Izv. Akad. Nauk SSSR, 26, 5-52 (1962).
[6] I. I. Shmulev: Periodic solutions of the first boundary problem for parabolic equations (Russian). Mat. Sbornik, 66 (108), 398-410 (1965).

[^0]: *) For the definitions of $C^{r+\alpha}(\bar{Q})(r=0,1,2), C^{2+\alpha}(\partial Q)$, and $A^{2+\alpha}$ see [2], [6].

