2. Remarks on Periodic Solutions of Linear Parabolic Differential Equations of the Second Order

By Mitsuhiko Kono
Research Institute for Mathematical Sciences, Kyoto University
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1966)

1. Introduction. Let E^{m} be the m-dimensional Euclidian space of points $x=\left(x_{1}, \cdots, x_{m}\right)$ and let Ω be an unbounded domain in E^{m} with boundary $\partial \Omega$. We set $Q=\{(x, t): x \in \Omega,-\infty<t<\infty\}$ and $\partial Q=$ $\{(x, t): x \in \partial \Omega,-\infty<t<\infty\}$. Q is an infinite cylinder in E^{m+1} whose base is Ω and whose (lateral) boundary is ∂Q. \bar{Q} denotes the closure of Q.

In this note we shall be concerned with periodic solutions of the first boundary problem in Q for linear second order parabolic equations having periodic coefficients and right members. ${ }^{1)}$

We shall briefly discuss the existence and the uniqueness of the periodic solutions which may grow exponentially as the variable x tends to infinity.

In our discussion we shall use the method similar to that employed by M. Krzyżański in regard to elliptic and parabolic boundary problems in unbounded domains [1-3].

The author of this note wishes to express his thanks to Professor M. Hukuhara for his constant counsel and kind guidance.
2. Let us consider the equation.

$$
\begin{align*}
L u & =\sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} b_{i}(x, t) \frac{\partial u}{\partial x_{i}}+c(x, t) u-\frac{\partial u}{\partial t} \tag{1}\\
& =f(x, t) \quad \text { in } Q,
\end{align*}
$$

and the boundary condition

$$
\begin{equation*}
u(x, t)=\varphi(x, t) \quad \text { on } \partial Q . \tag{2}
\end{equation*}
$$

We shall need the following assumptions:
1°. The functions $a_{i j}, b_{i}, c, f$, and φ are continuous in \bar{Q} and periodic with period $T(T>0)$.
2°. There exist positive constants A, B, and C such that

$$
\left|a_{i j}\right| \leqq A,\left|b_{i}\right| \leqq B, c \leqq-C \quad \text { in } \bar{Q}
$$

3°. The form $\sum_{i, j=1}^{m} a_{i j} \xi_{i} \xi_{j}$ is positive definite in \bar{Q}.
Definition. We shall say that a function $w(x, t)$ belongs to class $\bar{E}_{1}(K)\left(\underline{E}_{1}(K)\right)$ if there exist positive constants M_{0} and $k_{0}\left(0<k_{0}<K\right)$ such that

1) Here and throughout by a periodic function is meant one which is periodic in the time variable t.

$$
w(x, t) \leqq M_{0} \exp \left(k_{0} \sum_{i=1}^{m}\left|x_{i}\right|\right) \quad\left(w(x, t) \geqq-M_{0} \exp \left(k_{0} \sum_{i=1}^{m}\left|x_{i}\right|\right)\right)
$$

in \bar{Q}. We denote by $E_{1}(K)$ the class of functions belonging to $\bar{E}_{1}(K)$ and $\underline{E}_{1}(K)$ simultaneously.

Our first result is the following maximum principle.
Theorem 1. Let $u(x, t)$ be a regular ${ }^{2)}$ periodic (period T) solution of the problem (1), (2) belonging to class $\bar{E}_{1}(K)\left(\underline{E}_{1}(K)\right)$, where K is the positive root of the equation (in k)

$$
\begin{equation*}
m^{2} A k^{2}+m B k-C=0 \tag{3}
\end{equation*}
$$

If $f(x, t) \geqq 0(\leqq 0)$ in \bar{Q} and $\varphi(x, t) \leqq 0(\geqq 0)$ on ∂Q, then $u(x, t) \leqq 0$ $(\geqq 0)$ in \bar{Q}.

Proof. We introduce the function
(4) $H(x: k)=\prod_{i=1}^{m} \cosh k x_{i} \quad$ (k : a positive parameter) constructed by M. Krzyżański [3]. It has the following properties:

$$
\begin{equation*}
2^{-m} \exp \left(k \sum_{i=1}^{m}\left|x_{i}\right|\right)<H(x: k)<\exp \left(k \sum_{i=1}^{m}\left|x_{i}\right|\right): \quad \text { (ii) if } 0<k<k^{\prime} \tag{i}
\end{equation*}
$$ then $H(x: k) / H\left(x: k^{\prime}\right) \rightarrow 0$ as $x \rightarrow \infty$: (iii) to each $k, 0<k<K$, there corresponds a number $\delta(k)>0$ such that $L H(x: k) \leqq-\delta(k) H(x: k)$ in Q.

We denote by Q_{N} the intersection of Q with the circular cylinder $\{(x, t):|x|<N,-\infty<t<\infty\}$. The boundary ∂Q_{N} consists of two parts: the part $S_{N}^{(1)}=\partial Q \cap \partial Q_{N}$ and the remaining part $S_{N}{ }^{(2)}$.

Now, by hypothesis, there are constants M_{0} and $k_{0}\left(0<k_{0}<K\right)$ such that $u(x, t) \leqq M_{0} \exp \left(k_{0} \sum_{i=1}^{m}\left|x_{i}\right|\right)$ in \bar{Q}.

Consider the function $v(x, t)$ defined by $v(x, t)=u(x, t) / H(x: \bar{k})$ $\left(0<k_{0}<\bar{k}<K\right)$. Given an arbitrary number $\varepsilon>0$, we can choose $N>0$ so large that
(5) $v(x, t)<\varepsilon$ on ∂Q_{N}.

This follows from the following fact: $v(x, t)$ is non-positive on $S_{N}^{(1)}$ by the prescribed boundary condition, whereas it satisfies on $S_{N}^{(2)}$ the following inequalities:

$$
\begin{aligned}
v(x, t) & \leqq M_{0} \exp \left(k_{0} \sum_{i=1}^{m}\left|x_{i}\right|\right) / H(x: \bar{k}) \\
& =2^{m} M_{0} \exp \left(-\left(\bar{k}-k_{0}\right) \sum_{i=1}^{m}\left|x_{i}\right|\right) .
\end{aligned}
$$

Observing that $v(x, t)$ satisfies in Q_{N} the linear equation

$$
\bar{L} v=\sum_{i, j=1}^{m} a_{i j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} \bar{b}_{i} \frac{\partial v}{\partial x_{i}}+\bar{c} v-\frac{\partial v}{\partial t}=\bar{f},
$$

where

$$
\bar{c}=L H(x: \bar{k}) / H(x: \bar{k}) \leqq-\delta(\bar{k})<0 \quad \text { and } \quad \bar{f}=f / H(x: \bar{k}) \geqq 0 .
$$

2) A function $w(x, t)$ is called regular if it is continuous in \bar{Q} and if it possesses the derivative $\partial w / \partial t$ and the continuous derivatives $\partial w / \partial x_{i}, \partial^{2} w / \partial x_{i} \partial x_{j}$ in Q.

By the usual maximum principle of parabolic type equation, we conclude that the inequality (5) holds true throughout \bar{Q}_{N}. Let (x^{\prime}, t^{\prime}) be an arbitrary point of Q. It lies in Q_{N} for sufficiently large N, so that $v\left(x^{\prime}, t^{\prime}\right)<\varepsilon$. In view of the arbitrariness of ε we have $v\left(x^{\prime}, t^{\prime}\right) \leqq 0$, whence we assert that $v(x, t) \leqq 0$ and hence $u(x, t) \leqq 0$ in \bar{Q}.

Corollary. The boundary problem (1), (2) has at most one regular periodic (period T) solution belonging to class $E_{1}(K)$.

In the particular case where $\Omega=E^{m}$, that is, Q coincides with the entire space E^{m+1}, we get the following Theorem 1^{\prime}.

Theorem $\mathbf{1}^{\prime}$. If $u(x, t)$ is a regular periodic (period T) function which is of class $\bar{E}_{1}(K)\left(\underline{E}_{1}(K)\right)$ in E^{m+1} and such that $L u \geqq 0(\leqq 0)$ in E^{m+1}, then $u(x, t) \leqq 0(\geqq 0)$ throughout the space E^{m+1}.
3. This paragraph is devoted to the study of the existence of periodic solutions of the boundary problem (1), (2).

Hypothesis (H). Let $\psi(x, t)$ be an arbitrary continuous function in \bar{Q} which is periodic (period T). For every $N>0$ there exists a regular periodic (period T) solution $u(x, t)$ of the equation (1) in Q_{N} satisfying the boundary condition $u(x, t)=\psi(x, t)$ on ∂Q_{N}.

Theorem 2. Let the hypothesis (H) be satisfied. If, in addition to the assumptions $1^{\circ}-3^{\circ}$ already made, we assume the following:
4°. The functions f and Φ are continuous in \bar{Q}, periodic (period $T)$ and belong to class $E_{1}(K) . \Phi(x, t)$ is the extension of $\varphi(x, t)$ and $\Phi(x, t)=\varphi(x, t)$ on ∂Q. Then the problem (1), (2) has a unique regular solution which is periodic (period T) and belongs to class $E_{1}(K)$.

Proof. At first, we construct, according to the hypothesis (H), a sequence of periodic (period T) functions $u_{N}(x, t)$ satisfying:
$L u_{N}=f(x, t)$ in Q_{N} and $u_{N}(x, t)=\Phi(x, t)$ on $\partial Q_{N}(N=1,2, \cdots)$.
To show the convergence of this sequence we introduce the functions

$$
v_{N}(x, t)=u_{N}(x, t) / H\left(x: k^{*}\right) \quad(N=1,2, \cdots)
$$

$v_{N}(x, t)$ satisfies the linear equation of the form

$$
\begin{equation*}
L^{*} v_{N}=\sum_{i, j=1}^{m} a_{i j} \frac{\partial^{2} v_{N}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} b_{i}^{*} \frac{\partial v_{N}}{\partial x_{i}}+c^{*} v_{N}-\frac{\partial v_{N}}{\partial t}=f^{*} \text { in } Q_{N} \tag{6}
\end{equation*}
$$

and the boundary condition

$$
\begin{equation*}
v_{N}(x, t)=\Phi^{*}(x, t)=\Phi(x, t) / H\left(x: k^{*}\right) \text { on } \partial Q_{N} . \tag{7}
\end{equation*}
$$

From the assumption 4° there are positive numbers M_{0} and k_{0} $\left(0<k_{0}<K\right)$ such that

$$
|f(x, t)| \leqq M_{0} \exp \left(k_{0} \sum_{i=1}^{m}\left|x_{i}\right|\right),|\Phi(x, t)| \leqq M_{0} \exp \left(k_{0} \sum_{i=1}^{m}\left|x_{i}\right|\right) \text { in } \bar{Q} .
$$

If k^{*} is such that $0<k_{0}<k^{*}<K$, then we find that
$c^{*}(x, t) \leqq-\delta\left(k^{*}\right)<0,\left|f^{*}(x, t)\right| \leqq 2^{m} M_{0}$ and $\left|\Phi^{*}(x, t)\right| \leqq 2^{m} M_{0}$ in \bar{Q}.

We put $w_{N}^{ \pm}(x, t)=2^{m} M_{0}\left(1+1 / \delta\left(k^{*}\right)\right) \pm v_{N}(x, t) \quad(N=1,2, \cdots)$.
Since $w_{N}^{ \pm}$satisfy the inequalities $L^{*} w_{N}^{ \pm} \leqq 0$ in Q_{N} and $w_{N}^{ \pm}(x, t) \geqq 0$ on ∂Q_{N}, by the maximum principle we get $w_{N}^{ \pm} \geqq 0$ in \bar{Q}_{N}, or equivalently, (8) $\left|v_{N}(x, t)\right| \leqq 2^{m} M_{0}\left(1+1 / \delta\left(k^{*}\right)\right)=M_{1}$ in $\bar{Q}_{N}(N=1,2, \cdots)$.

We set
(9) $\quad w_{N N^{\prime}}=\left(u_{N}-u_{N^{\prime}}\right) / H\left(x: k^{* *}\right)=\left(v_{N}-v_{N^{\prime}}\right) H\left(x: k^{*}\right) / H\left(x: k^{* *}\right)$, where $N<N^{\prime}$ and $0<k_{0}<k^{*}<k^{* *}<K$. $w_{N N^{\prime}}(x, t)$ satisfies in Q_{N} a homogeneous equation analogous to (6). For any given $\sigma>0$ there is an N such that $\left|w_{N N^{\prime}}(x, t)\right|<\sigma$ on ∂Q_{N} (This follows readily from (8), (9) and the property (ii) of $H(x: k)$). Hence, we get $\left|w_{N N^{\prime}}(x, t)\right|<\sigma$ in \bar{Q}_{N}, whence

$$
\left|u_{N}(x, t)-u_{N^{\prime}}(x, t)\right|<\sigma \text { l.u.b.b. } H\left(x: k^{* *}\right) \text { in } \bar{Q}_{N}
$$

Q^{\prime} being an arbitrary cylinder contained in \bar{Q}_{N}. This shows that the sequence $\left\{u_{N}(x, t)\right\}$ is uniformly convergent in every cylinder with bounded base in \bar{Q}. Clearly, the limit function $u(x, t)=\lim _{N \rightarrow \infty} u_{N}(x, t)$ is periodic ($\operatorname{period} T)$ and takes on the boundary values $\varphi(x, t)$ on ∂Q.

It remains to show that $u(x, t)$ is a regular solution of (1). It is enough to prove this in the cylinder $Q_{N_{0}}$ for an arbitrary N_{0}.

To this end, let $U(x, t)$ be a regular periodic (period T) solution of (1) in $Q_{N_{0}}$ such that $U(x, t)=u(x, t)$ on $\partial Q_{N_{0}}$. Given any $\varepsilon>0$, there is an $N_{1}>N_{0}$ such that for $N>N_{1}$ we have

$$
\begin{equation*}
\left|U(x, t)-u_{N}(x, t)\right|<\varepsilon \text { on } \partial Q_{N_{0}} \tag{10}
\end{equation*}
$$

We set $V(x, t)=U(x, t) / H\left(x: k^{*}\right)$ and denote by $\Gamma\left(k^{*}\right)$ and
 $V(x, t)-v_{N}(x, t)$ satisfies a homogeneous equation analogous to (6) and that it is less than $\frac{\varepsilon}{\gamma\left(k^{*}\right)}$ on $\partial Q_{N_{0}}$ (see (10)), we obtain

$$
\left|V(x, t)-v_{N}(x, t)\right|<\frac{\varepsilon}{\gamma\left(k^{*}\right)} \text { in } Q_{N_{0}} .
$$

This implies that

$$
\begin{equation*}
\left|U(x, t)-u_{N}(x, t)\right|<\varepsilon \frac{\Gamma\left(k^{*}\right)}{\gamma\left(k^{*}\right)} \text { in } Q_{N_{0}} . \tag{12}
\end{equation*}
$$

From (11) and (12) we obtain

$$
|U(x, t)-u(x, t)|<\varepsilon\left\{\frac{\Gamma\left(k^{*}\right)}{\gamma\left(k^{*}\right)}+1\right\} \text { in } Q_{N_{0}}
$$

which means that $U(x, t)=u(x, t)$ in $\bar{Q}_{N_{0}}$.
That the solution $u(x, t)$ belongs to class $E_{1}(K)$ is an immediate consequence of (8):

$$
|u(x, t)| \leqq M_{1} H\left(x: k^{*}\right) \leqq M_{1} \exp \left(k^{*} \sum_{i=1}^{m}\left|x_{i}\right|\right) \text { in } \bar{Q} .
$$

The uniqueness of the periodic solution follows from Theorem 1.

The proof is thus completed.
Remark. From Theorem 1 of I. I. Shmulev [4] it is not difficult to point out a situation where the hypothesis (H) is actually satisfied under some conditions.

We conclude by stating the following theorem on the existence of entire periodic solutions.

Theorem 2'. Let the following assumptions be satisfied:
I. The coefficient $a_{i j}, b_{i}$, and c of (1) are periodic with period T and locally Hölder continuous in E^{m+1}. There are positive constants A, B, and C such that

$$
\left|a_{i j}\right| \leqq A, \quad\left|b_{i}\right| \leqq B, \quad c \leqq-C \quad \text { in } \quad E^{m+1}
$$

II. There exists a positive constant μ such that

$$
\sum_{i, j=1}^{m} a_{i j} \xi_{i} \xi_{j} \geqq \mu \sum_{i=1}^{m} \xi_{i}^{2} \quad \text { in } E^{m+1}
$$

III. The function f is locally Hölder continuous in E^{m+1}, periodic with period T and belongs to class $E_{1}(K)$, where K is the positive root of (3).

Then there exists one and only one periodic (period T) function $u(x, t)$ satisfying the equation (1) in E^{m+1} and belonging to class $E_{1}(K)$.

References

[1] M. Krzyżański: Sur les solutions des équations du type parabolique déterminées dans une région illimitée. Bull. Amer. Math. Soc., 47, 911-915 (1941).
[2] -: Sur les solutions de l'équation linéaire du type parabolique déterminées par les conditions initiales. Ann. Soc. Polon. Math., 18, 145-156 (1945); 20, 7-9 (1948).
[3] -: Sur le probléme de Dirichlet pour l'équation linéaire du type elliptique dans un domaine non borné. Atti Accad. Naz. Lincie. Rend. Cl. Sci. Fis. Mat. Nat., 4 (8), 408-416 (1948).
[4] I. I. Shmulev: Periodic solutions of the first boundary problem for parabolic equations. Mat. Sbornik, 66 (108), 398-410 (1965).

