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1. On Relative Maximal Ideals in Lattices

By Seima KINUGAWA and Junji HASHIMOTO
(Comm. by Kenjiro SHODA, M.J.A., Jan. 12, 1966)

1. Introduction. Let S be a sublattice of a lattice L. An
ideal M of L shall be called a relative maximal ideal with respect
to S, like that in a ring, when M is maximal among ideals which
are disjoint to S. It was pointed out by Gratzer and Schmidt [1]
that there is a close connection between relative maximal ideals and
prime ideals. In the present paper we intend to make some additional
researches to them and give an assertion analogous to Cohen’s theo-
rem in ideal theory for rings.

Again the properties of relative maximal ideals are useful for
the decomposition theories in distributive lattices. So we shall give
in § 3 new proofs of Kurosch-Ore Theorem concerning the decom-
position of elements, which is generalized by Dilworth and Crawley
[4], and Hashimoto’s theorem [3] concerning the decomposition of
ideals.

2. Relative maximal ideals. Let P be a prime ideal of a
lattice L, then the complement L—-P of P is a dual prime ideal. So
every prime ideal P of a lattice L becomes a relative maximal ideal
with respect to a sublattice L—-P. Concerning the converse we shall
show the theorem of Gratzer and Schmidt [1] in a somewhat gener-
alized form.

Theorem 1. FEach of the following conditions are necessary
and sufficient in order that a lattice L be distributive;

(1) every relative maximal ideal of L is prime;

(2) every relative maximal ideal of L with respect to a one-
element sublattice ts prime.

Proof. Let M be a relative maximal ideal with respect to a
sublattice S of a distributive lattice L. Suppose that M is not
prime. Then there exist elements z,y such that x¢ M, y¢ M, and
rNyeM. MU@@]R2M and MU (y12M imply {MU(x]}NS>s, and
{MU(y]}nS 3s, by the maximality of M, hence {MU (x]}N{MU (y]} >
8;N8s,. Since the ideals of a distributive lattice themselves form a
distributive lattice, s,Ns,e {MU(x]}N{MU(y]}=MU{(z]N(y]l}=MU
(xNyl=M, which is a contradiction. Obviously (1) implies (2),
accordingly we need only prove that (2) implies the distributivity of
L. 1If a lattice L is not distributive, there exists in L a sublattice
isomorphic to the lattice of Fig. 1 or Fig. 2. But in both cases,
the relative maximal ideal with respect to b containing the principal
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Fig. 2 Fig. 3

ideal (a] contains d=bNe¢, but does not contain b and ¢. (The
existence of those relative maximal ideals is due to the Axiom of
Choice.) It is contrary to the assumption.

Corollary 1. Ewvery maximal ideal of a distributive lattice is
prime.

It is easy to see that every prime ideal of a relatively comple-
mented lattice is maximal.

Corollary 2, Ewvery relative maximal ideal of a relatively
complemented distributive lattice is maximal.

Next it has been proved by Cohen [2] that every ideal of a
commutative ring R is generated by a finite number of elements if
and only if every prime ideal of R is generated by a finite number
of elements. Now we shall show the analogous assertion for lattices.

Theorem 2. If every relative maximal ideal of a lattice L
with 1 s principal, then L satisfies the ascending chain condition
and hence every ideal of L is primcipal.

Proof. Suppose that L contains an infinite ascending chain

C: 0,<, <A<, -,
and put J={x; vx=a,; for some a;c C}, J'={y; y=a; for all a,c C}.
J' is non empty since J' contains 1. J and J’ are an ideal and a
dual ideal respectively, and they are disjoint. Then there exists a
relative maximal ideal M which contains J and is disjoint to J'.
If we denote M=(m] by the assumption, then m=a,; for all a,eC
and m ¢ J’, that is a contradiction.

Corollary, FEwvery ideal of a distributive lattice L with 1 s
principal f and only 1f every prime tdeal of L is principal.

The distributivity in the corollary can not be dispensed with.
The lattice of Fig. 3 does not satisfy the ascending chain condition
nevertheless every prime ideal of it is principal.

3, Factorization of ideals. An ideal I of a lattice L is called
factorizable if and only if it is decomposable into the meet of the
prime ideals which contain it. Now let M be a relative maximal
ideal of a lattice L with respect to a one-element sublattice {a} of
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L. If a set {I,} of ideals satisfies M= I,, then some I, does not

contain @ and M=1,, since M is maximal.

Lemma 1. The relative maximal ideal of a lattice with respect
to a one-element sublattice its meet irreducible. Accordingly the
relative maximal ideal of a lattice with respect to a one-element
sublattice is factorizable 1f and only if it is prime.

Then we show another form of Hashimoto’s theorem [3].

Theorem 3. FEach of the following conditions are mnecessary
and sufficient in order that a lattice L be distributive;

(1) every tdeal of L is the meet of the prime ideals which
contain it;

(2) every relative maximal tdeal of L is the meet of the
prime tdeals which contain it;

(38) every relative maximal ideal of L with respect to a one-
element sublattice is the meet of the prime ideals which contain %t

Proof, Suppose that L is a distributive lattice, and let I be
an ideal of L such that I& N P, for all prime ideals P, (a € A) such

that P,=2 1. Then we can ﬁaild an element x such that Izx, and
N P,>x, and there exists a relative maximal ideal with respect to

2, containing I, which is prime by Theorem 1. This is a contra-
diction to N P,>x. Hence every ideal of L is the meet of the prime

ideals Whicﬁ contain it.

Obviously (1) implies (2) and (2) implies (3). (3) implies the
distributivity of L by Theorem 1 and Lemma 1. Thus the proof is
completed.

Again an element ¢ of a lattice L is called to be compact if
¢ = US implies ¢ = US’ for a finite subset S’ of S, and a lattice
L is said to be compactly generated if L is complete and every
element of L is a join of compact elements. If every interval
[a, b](a#b) of a lattice L contains an element covering @, then L
is called atomsic.

Recently, Dilworth and Crawley [4] have shown that the existence
and uniqueness theorems for decompositions into irreducibles hold for
the compactly generated atomic lattices. Now we shall show a
simpler proof of one of them,

Lemma 2. If b covers a in a distributive lattice L, then
there exists one and only one prime ideal which contains a but
not b. Further if L is a compactly gemerated lattice, then that
prime ideal is principal.

Proof. A relative maximal ideal P with respect to b contain-
ing @ is prime by Theorem 1. Suppose that @ is any prime ideal
which contains @ and not b, then we have (¢Ua)Nb=aec P and ¢=
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qUaeP for all ge @, hence Q=P, similary P=@Q and we have
Q=P, If L is compactly generated, then b=U{c; ¢=b, compact}
and there exists a compact element ¢ such that b=e¢, a2c. Let P
be a relative maximal ideal with respect to ¢ which contains (a] and
put p=U P. If e=sp=U P, then ¢= U P’ where P’ is a finite sub-
set of P and thus ¢e P, which is a contradiction. Hence (p]2P2
(a] and (p] B¢ imply P=(p] by the maximality of P.

Theorem 4. Ewvery principal ideal of an atomic, distributive
lattice L has a unique trredundant factorization.

Proof., Let (a] be a principal ideal of a distributive lattice L
and B the set of the elements covering a. For any element b of
B, there exists one and only one prime ideal P, which contains (a]
and not b, by Lemma 2. Then (a]zrb] P,; otherwise we can find an

element x such that x¢ (a], x€ N P;, and b’ such that xUa=b'>a
and P, 3, which is a contradictbion. Now let (a]=N Q. (€ A) be
another factorization. Since P, is the unique prin?e ideal which
contains (a] and not b, P, ¢ {Q,.} implies N Q.2(b]1D(a], which is a
contradiction, hence {Q,}2{P,}. Thus the factorization O P, is irre-
dundant, and if N Q, is irredundant, then {Q.}={P,}.

And if L is a distributive lattice, then it is known that an
element o of L is meet irreducible if and only if (a] is prime.
Hence we can deduce the result of Dilworth and Crawley [4].

Corollary, FEvery element of a compactly generated, atomic,

distributive lattice has a unique irredundant decomposition into
rreducibles,
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