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30. E.R. v Singular Cut-Off by the Measure v (x, d; /)

By Hideo YAMAGATA
(Comm, by Kinjiré6 KuNuGl, M.J.A., Feb. 12, 1966)

§1. Introduction: Singular cut-off by wusing the measure
defined in Minkovski space has shown in [3] p. 550. The advantage
of this E.R. v singular cut-off is to admit the expectation value
conserving transform of non-local field function (related to Lorentz
transform) satisfying the formal Lorentz covariance. In this trans-
form all non-covariant effects are reduced to the change of the
definition of singular integral (the change of the measure v). Since
this change of v corresponds to the change of summation’s order, it
can be considered as the change (related to non-local structure) by
the concepts independent of Lorentz transform. As a possible de-
formation of this singular cut-off, in §2 we give a sort of three
dimensional singular cut-off by using the measure v (x,0;4) (a
deformed singular cut-off related to the neighbourhood of the set
of all space-like position for a point). Since this new singular cut-
off has the simple form near the three dimensional one, it seems
that this replacement of v depending on 4 can be understood by non-
local mechanism well.

The non-local field function by this singular cut-off satisfies the

expectation value conserving Lorentz covariance by the form
Ula, 4) (1/20)

{BR. B.u(a, 5 D
=(1/2a){E.R. B.v(z, 5; 4)

(z" 2 2=0/2 _';2< 2}f(x,) dxs So(x*‘:ﬁ’) dZﬁ,} U_I(a, A)
EAREIeal it a

S S<:<» F(@') d(A@D) o(Ao+a— AG)) d(A(az'))} (1)
(see §3 Def. 4).§d(/1(x:,)) is the normalized one satisfying

Sd(A(x{,)d(A(aa'))z Sd(Ax’).
Here, the integral related to this cut-off is by the meaning of [2]
p. 377 Def. 1, and E.R. B vS is a special form of E.R. ”S defined

in [2] p. 548 Def. 2. This covariance has the advantage similar to
the results in [9] p. 35 which is the origin of the 4 inhomogeneous
Lorentz covariance (for three dimensional case) appearing in [2] p.
380 Def. 3. Because we can obtain the various initial conditions
related to (@, 4) (on the various space-like manifolds) from this
Lorentz covariant (unified) form (1), Furthermore this measure



120 H. YAMAGATA [Vol. 42,

v(x, 0; A) is based on an interpretation (an hypothesis) of E.R. v
singular cut-off (by probability). It seems that this interpretation
replaces the freedom related to r, in [10] p. 220 by the suitable
statistical interpretation of the behavior of positive and negative
components in “elementary particle”, Furthermore it assures the
rightousness of the model of moving d(x)s near the one in [1] p. 74.

v(x, 0; A) is the measure with the following properties;

(i) v(z, 8; H)=v,(®, 9; 1)

([3] p. 551 vy, o; 1)(B)=S (A3 9, 1)dx>,

(i) the mean (see §2 Def. 4) of }(x) by this v in the set
{a; *=a;—2°< ]’} constructs the mollifier corresponding to g(%)e (?)
((®) or (D)) for any observer, and this mean in {x; 2*=2x)—%*<0%
(0<o<l) constructs the mollifier corresponding to (%), where the

singular function f(x) has the property f(z)=f(4x) in [3] p. 549
Lemma 4.

This y(zx, 0; 4) seems to be effective to give the more suitable
connection connected with relativity between the local field theory
and non local field theory. Then in § 3 by using a sort of uncertainty
about the relativistic distance not contradict to well known one by
Heisenberg, let’s discuss more precisely (than [3] p. 551) the inter-
pretation of commutation relation of these non-local fields in connec-
tion with macrocausality by using the property (ii) of v (x, 8; 4).

§2. Interpretation of E.R. v singular cut-off by probability:
The definition of E.R. v integral [2] p. 547 Def. 1 and its special
form E.R. B. v integral corresponding to one defined in [2] p. 548
Def. 2 are not shown but used here. According to the proof by

H. Okano, E.R. B. vg is the special one of E.R. ”S'

Singular cut-off is to construct a sort of singular integral con-
volution (or its deformation) of field function by a singular mollifier

[2] p. 377 Def. 1, [3] p. 548. This convolution is deduced from
the similar thought to [8] p. 391 ete.

Definition 1. If E.R. integral [6] p. 17 (equal to A integral
[56] p. 131 which has the original form (B) integral [4] p. 220) is
used as singular integral in this cut-off, this singular cut-off is
called E.R. singular cut-off (equal to A singular cut-off). Similar
definitions are given to cut-offs in which various singular integrals
are used.

The notations used in this paragraph are the following. X; a
Minkovski space E* with a fixed coordinate. 4AX; Minkovski space
E* with the coordinate transformed by A (homogeneous Lorentz
transform) from one defined in X, S,; the set in E*

fo; ( S8y <a’=0i—3'<(1+ 37'87)}
p=1,p>1

p=0,p>
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for k=2, and {x; #*=u;—%*<0} for k=1. f(x); singular function
defined in E* with the property defined in [3] p. 549 Lemma 4 and
with f(x)=f(4x) for any 4. C(n, +, 4); nth class of positive particles
(components) by the observer in AX, C(w, —,4); wmth class of
negative particles (components) by the observer in 4X. C(n, )=
C(’ﬂ, +’ A)UC(’I’L, ) A)'

Hereafter we will show only the notation related to positive
particles for the simplicity. But we use the similar notations
related to negative particles without any descriptions. v(d, k, 4)
(k=1,2, ...); the measures (depending on f(x)) which satisfy the
relation (3*7Y/2) E.R. B. v (9, k, A)

|,/ @) Al @) dCae)=o@) (@) di

for any 4, any real a, and any (Z)e (B) [7], II, p. 55, where  ,(x)
is the function defined in the set {x; x=4%, 2 e E?¥} (for fixed A)
with the property ¥ .(4®@))=+(%). v (9, k, 4) can be constructed by
the same method as the construction of v, in [8] p. 551. X, (4);
the set of « in which the positive particles contained in C(n, +, 4)
appears under the rule by v(0,k, 4). SX;(MD=U pou Xibu(A).
[fJura(x); the function in nth step (defined in [38] p. 547 Def. 1)
by ))(3, k’ A)’ I:f]o,k,A(w)EO:

f@;n, kb, 4, +)=[LfJnwa@) ] — L0 Juespa(®)]*
etc., where [ ] means the positive part of function.

Now let’s show the hypothesis by which the fundamental meaning
of a sort of three dimensional E.R. v singular cut-off discussed in
introduction is given. This hypothesis is derived from the expecta-
tion of positive and negative particles (the component of “elementary
particle”) under the complicated Brownian motion with many stable
points, and it (the interpretation by probability) is shown here by

the construction of the following special model. (We can generalize
this model easily.)

(A) (the properties of X, ,(4) and X, ,(4))
(1) SXL(MHUSX;(A)=S, and X (A)=X,;(A)=¢ for k>n.
(i) SXSW(DDSXif (M),
SXo (M) DSX iy w(M)De -+

(i) (SXFDUSK (M) N(SX (A USXp,(M)=¢ for any
k=, SX;H(MHNSX; (4)=¢ for any k, and U, U, SXE ()=
FN{x; —wo—aﬂ<(2°"3 *}¥=10*}, where F'={x; f(x)+0}.

(B) (the propertles of the summation by n related to 4(%))

(i) If k=2, SXz @ contams the set SXE.Q)N{x; A+
2"_23_”——8n k(llw[lz))2<x =xi— <(1+ 2"‘23“’)2} for suitable non
1ncreasmg sequence (by n) of posutlve functlons &l 2 ), and if
k=1, it contains the set SXx(1)N{x;x*=ai—2*>—¢, (|| % |} for
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suitable non increasing sequence of non negative functions ¢, (|| % ||?).
(ii) f(z;n,k, 4, +)#0 in only bounded X, . (4) and f(x;n,k,
A, —)#0 in only bounded X, ,(4) (for n>k).
(iii) For a fixed n, probability appearing in each point « and
total density related to positive (negative) particles are defined by

Sefsn k4, ] L f@sn k4, +)do
=1 =1 x4

<
and 2"8 . F@in, k4, +)dw
= Jxf
(r@sm, b, 4, sy f@im, k4, —)da
k=1 =1 Jx;
and zng F@;n, k, 4, —)dw).
k=1 )X L4

From the definition of f(x;n, k, 4, +), v(0, k, A) ete. this sum
by = constructs o-like funection.
(C) (the summation by (n, k) related to ¢(%))

e {2 [r@in, ko, 4, +) da@) 7046 da@)

37 {(r @i m, b, 4, =) dca@) F04@) da@y}= 9@ v@) da

for any ¢g(@) e (Z) (&) or (D)) and any element (%) (J(A(%))) in (B).

These requirements (A)-(C) may be satisfied by probability
meaning for each (and for one) so-called elementary particle belong-
ing to the same kind,

Definition 2. The concrete model satisfying the above re-
quirements (A)-(C) is called fundamental model,

In the order of £=1,2,38, ---, we can construct {f(z; k, k, 1, +)}
{f(x; k, k,1, =)} and v(, k, 1) satisfying the above requirements
(A)-(C) for 4=1 from f(x) [3] p. 550 Theorem 1,

Since d(4x)/o(x)=1, we assert the following theorem from the
similar method to the construction of v,[3] p. 551.

Theorem 1. v(d, k, 4) (k=1,2,3, ---) X} .(4) and X ,(A) satisfy-
wng the requirements (A)-(C) can be constructed.

In the proof of this theorem, the change of d(A(x,)) and d(A(%))
by 4 plays the very essential role.

By a sort of periodicity the non-local range {x;x*=ux;—u*<<!?}
can extend till E*, We can also construct new model in which [
(corresponding to >1°37?) becomes . These models easily become
non relativistie fo;rr: by the consideration of infinite light velocity.

Definition 3. If X .(4) and X ,(A) are the sets contained in
F N S, which plays the same role as (B) (i), the measures with the
properties (A)~(C) is denoted by v(x, d; 4).

Theorem 2. y(x,0; A) satisfies the conditions (i) (ii) shown in
wntroduction.
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Definition 4. The singular cut-off by v(x, d; 4) is to construct
the following non-local field function ¢xf from the local field function
o(x) by using f(x);
oxf=(1/(2r)"")

{{(@ @ 28)-E.R. B. v (s, 0; )| F') d(A()

(m;ﬂ:z%——;x?édz)

exp i{kA@— &)+ ka—koAt) d(AE)) dF+ S(a(%)h/z—ko).E.R.B.»(x,a;A)

o @) ACAGD) exp (—iHEAE )+ ha— 4t} d(AE) dF}
for (a, 0./1).

Here Sd(A(xo)) means the integral along the pararell axes to 7,=

{e; @=A(0, x,)} under the normalization defined in introduction whose
value takes at the meet point of these axes and the hyperplane
Y, ={x; x=A(%, 0)}, and Sd(A(bE’)) means the integral in X,

According to (B)-(C), for the model by v(x, d; 4) (for any A), it
seems that local theory is satisfied for the mollifier defined by the
mean (Def. 4) of f(x) in {x; 2*<0} (or {x; x*=uai—%F'<0?} (0<a<]))
and non-local theory is satisfied for the mollifier defined by the mean
(Def. 4) in {x; x*=w;—%*<0?}. Then Lorentz covariance and causality
condition seems to be able to satisfy by the nearly ordinary meaning.

§3. The role of the measure Y(%,d; 4) in commutation
relation; By using this v(x, d; 4), let’s show here that the macro-
causality is satisfied by this non-local theory in a sense. Here at
the first step we use the most usual causality condition as follows
[8] p. 390;

Definition 5. If [¢(®), II(x")]=0 holds valid for space-like
pair of points (x, 2’), then ¢(x) satisfies the causality condition.

At the first step, let’s consider the generalized operator valued
funection (1/20)* E.R. B. v(x*, 6; 4)-E.R. B. V'(x*', ; A

I1i ; ey T, ) @) (A
{(@*, 2% ) ;2= g2~ 22 < a2, (o* —a/ +2) 3= ( )= ( )2<o?)
Lo(dx+a—A@*)), H(Ax"+a—AT*"))] Ad(A(E*)) d(A@*")).

Here E.R. B. v(z, d; 4) integral and E. R. B. v'(x, §; 4) integral are
understood by the meaning of [2] p. 377 Def. 1. and h(z, x')=
F(®)-§(a’) satisfies the property f(4x).g(A'x")=f(x)§(x’) for any AL,

Suppose that for each space-like pair of points (x, 2'), 0=o<!
(namely 0(%)-0(%')) is used except for small probability, and for each
not space-like pair of points (x, «’), 0=1 (namely f(%)-g9(Z")) is used.
Since space-like property is invariant by Lorentz transform, then
causality condition is satisfied independently of Lorentz transform,
but divergences related to commutation relations cannot be seen in
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relativistic frame, These assumptions seem to be effectively given
by the mean Sd(/l(xo)) in definition 4. Here the use of 0(%)-0(%’)

can be understood that the effective ranges are not one point but
look alike to one point. This is also effective to the macrocausal
interpretation of almost every process.

At last since this v (x, d; 4) continue the change depending on
the relativistic distance ¢, then the structures of C(n, +, 4) and
C(n, —, 4) (in space-like position) are also changed depending on
this, and then it seems that this situation is like to the radiation
and absorption of photon ete.
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