78 [Vol. 42,
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By Gou-Sheng YANG
Department of Mathematics, Tsing Hua University, Taiwan, China
(Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1966)

1. Introduction. In a recent paper [1], Z. Opial proved the
following interesting integral inequality:

Theorem. Let y(x) be of class C' on 0<a<h, and satisfy
¥(0)=y(h)=0, y(x)>0 on (0, h). Then

" ’ h b 12
(1) oy do< 2y ao.
0 4 Jo

The constant h/A is best possible.

C. Olech [2] showed that (1) is valid for any function which is
absolutely continuous on [0, 2], and satisfies the boundary conditions
Y(0)=y(h)=0, and Olech’s proof of (1) was much simpler than that
of Opial. P. R. Beesack [3] gave an even simpler proof of (1) under
the hypotheses of Olech, and he also gave more general inequalities
of the same type. Later, many simpler proofs were given by N.
Levinson [4], C. L. Mallows [5], and R. N. Pederson [6].

By Mallows’ method of the proof of (1) we shall give a simple
proof of some results of Beesack [8], and show how this method can
be used to yield generalization of Opial’s and Beesack’s inequalities,

b b
2. On the inequality 25 lyy' | de< K S py'td,

Let us define z(x)=§x| y(@)|dt, a<e<X. Then |y(x)| <z(x)
for a<z<X, and we havzz
ZSXI y(x)y' () | dw<2§xzz’dx=z2(X ).
Now by the deﬁnit;on of z(x) and Sc}alwarz’s inequality
20)=({]1v@|ds) <" p@aal pyde.
There is equality only if yzAgzp“(t)dt, A Dbeing a constant, Similarly,

define 2(a)= — S"| y(t) | dt, X<x<b. Then |y(x)|< —2(x) for X<z<b,
and
b b b 2 b b
ZS lyy’ | dw<2§ ——zz'dxzzz(X):(—S [y | dx) <S p‘ldwg py"dw.
P-4 p.4 5 p.q p.q p.4
There is equality only if yng p~Y(t)dt, with B constant. Now, we
take X such that

(2) k={"pata=| piw)d,
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then we get
Theorem 1. Let p(x) be a positive and continuous function

b
on a finite or infinite interval a<<x<<b, such that Sp‘l(x)dw<oo

and let y(x) be an absolutely continuous function on (a,db) with
y(a) = y(b)=0. Then

ZSbI yy' | de<K pry’zdx,
where K is defined by (?2). Equal’étyaholds only f
y(x):AS”p—l(t)dt (a<z<X), y(w)zBpr"l(t)dt (X<w<b).
Opial’s ainequality (1) is a special case ofx Theorem 1 that a=0,
b=h, and p(x)=1.
3. On the inequality Zqu gy’ | dx<§bp‘1dxgb pqy'tdx.
Lemma 1. Let p(x) be a ubounded, pos;tive cle non-tnereasing

Junction defined on a<x<b. Let y(x) be absolutely continuous on
a<x<b, with y(a)=0. Then

(3) oy do< b0

S py"da.

Proof. Define 2(x)= 81/— |y/(t)| d¢ (a<w<b). Then
’ — z(a’)
)Svpa)ly(t)ldt s

@) = | [y <
for a<<a<b, so that
ZS:p Ly | dx<2§izz’dx:z2(b)=<821/m /(@) dm)z.

By Schwarz’s inequality,

(S:l/ﬁ(_ﬂly'(x)ldx)2<g Spy’zdw (b— “)S pyda.

There is equality only it p=constant and y=Ax with A constant.

Lemma 2. Let p(x) be a bounded, positive and non-decreasing
function defined on a<x<b, and let y(x) be an absolutely conti-
nuous function on a<wx<b, with y(b)=0. Then the inequality (3)
holds. Moreover, there is equality only i+f p=constant, y=DB(x—b),
with B constant.

Proof. Define z(w):-SbV 20 |y/(t)|dt (a<z<b).  Then

W(@K—& for a<x<b, so that

Z70)
-25210 |y | de< —2§:zz’dx=z2(a)= (SZVW /(@) | dx>2.

By Schwarz’s inequality (3) follows immediately. There is equality
only if p=constant, y=B(x—b) with B constant.
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From Lemma 1 and Lemma 2, follows immediately

Theorem 2. Let p(x) be a bounded, positive and monotonic
Sunction defined on a<x<b, and let y(x) be an absolutely continuous
function on a<x<b, with y(a)=y(b)=0. Then the imequality (3)
holds. If p=constant, then the constant 1/2 can be replaced by
1/4, and then Opial’s inequality (1) 4s obtained by letting a=0
and b=h.

We shall now prove a generalization of Beesack’s theorem.
X
Theorem 3. Let p(x) be positive on a<r< X, with S pldar<< oo,

a

and let q(x) be bounded, positive and non-increasing on a<x<X;
y(x) be any function which is absolutely continuous on a<ar<X,
with y(a)=0. Then

X P-4 p.g
(4) 2 g luy' do<| pdal poyiaa.
There ts equality only if q = constant, y=ASxp"1(t)dt or y=0.

Proof. Define z(m)zszvmiy'(t)ldt. Then /(&) =1/q@) | ¥/ ()]

for a<x<X. Since ¢(x) is non-increasing on a<x<<X, we have

POISRPOIES V%g:fq@y Y @) | do = 2@l .

q(x

Hence
Zqu Ly | dx<2§jzz'dx=z2(X)=(Sj1/?(t7 |y | dt)

By Schwarz’s inequality, we get (4). There is equality only if ¢=
constant or y=0.
Similarly, we have

2
.

b
Theorem 3’. Let p(x) be positive on X<ax<b, with S pidr< oo,
P4
and let q(x) be bounded, positive and mon-decreasing on X<x<b;
y(x) be any function which is absolutely continuous on X<x<b,
with y(b)=0. Then
b b b
(5) 2" g1y do<{ pdal payaa.
X p.4 P-4
Moreover, there is equality only if g=constant or y=0.
Theorem 1 is a special case of the combination of Theorem 3 and
Theorem 3’, taking ¢=constant,

4. On the inequality (m-i—n)gb Iy’”y’“ldx<n(b——a)msb|y' ™,

Lemma 3. Let y(x) be absolutely continuous on a<x<X, with
y(a)=0. Then

() @b vy de<X—ar| |y@ e, 2L,
Moreover, equality holds only if y=A(x—a), with A constant.
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Proof. Define z(x)_—.gwly’(t)ldt. Then |y(x)| <2(x) for a<z< X,
and we have
X X X n+1
(n+1)§ ™y | dw<(n+1)§ z”z’dxzz“l(X):(S @) | dt) :
By Holder’s inequality, (6) follows immediately. There is equality
only if y=A(x—a), with A constant.
Lemma 4. Let y(x) be an absolutely continuous function on
a<ae<X, with y(b)=0, then
b
(7) @+ |9y |da<@—X)| |y Pide, n>1,
.4 X
Moreover, equality holds only if y=B(x—b).
b
Proof. Define z(x):——s [y'(t)|dt. Then =z2'(x)=|y'(x)| for
X<x<b, and |y(x)| <—=2(x). Hence
b b b n+1
4D 1y || (—oywdo=(—aDy=(] 1y 1)
By Holder’s inequality, (7) follows immediately.
Take X=(a+b)/2 in Lemma 3 and Lemma 4, then we have
Theorem 4. Let y(x) be an absolutely continuous function on
a<r<h, with y(a)=y(b)=0. Then
| b
(&)  ze+D| vy ide<@-or] v rde, n>l.
We note that Opial’s inequality (1) is the special case with n=1,
a=0, and b=h,
Corollarly, Let y(x) be as in Theorem 4, and let P(y)=

S ay()t, with a0, k=1,2, -+ n. Then
k=1
b 2 (¢ b—a
de< '|)da.
(9) || 1 Pw@) |de< 2 P(22% |y |)as
Example., Let y(x)=x(a—x), with 0<a<1”2, and let P(y)=

i}y"(x). Then the relation (9) becomes (@—1)(2+3x) < log # in the
= 2x(x+1)

interval (1, o).
Lemma 5. Let y(x) be an absolutely continuous function on
a<e<X, with y(a)=0, then

(10) e+ 0| 1w | do<nX o) |y s, w1,

Proof. Define z(x)=g”|y'(t) "d¢. Then #'(¢)=|y'@)|* for
a<2<X, and by Holder’s inequality
© , % (n—1)[n x ' in 1/n n—1)/n "
@ < 1verae<((a) ([ ly rae) " <@—ay-orm ey,
Hence
p.q pq
D oy do <D (X =)o 2o
= (X —a) X)),
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By Holder’s inequality, (10) follows immediately.
Lemma 6. If y(x) is absolutely continuous on X<x<b, with
y(b)=0, then

(11) D[y de<n-X)( |y 1Pvde, n>1,
X pq

Proof. Define z(m)=~gb|y’(t)|”dt. Then ()= |y'(x)|* for
X<x<b, and then ’
@) <[ 1y @) | ds<@— Xy sy,
Hence
(n+ 1)8'; Ly | do<(n+ 1)§:(b—X)w-n/"(—z)v"z'dx
=n(b— X)=0In(—z( X))+ oin,
Now,
b (n+1)n b Ynd
(—a@por=({" |y o)< ([ do) " 1y e

b
=0-2"[ |y@ [+ da.

Therefore (11) follows immediately.
If we take X=(a+b)/2 in Lemma 5 and Lemma 6, then we
have the following

Theorem 5. If y(x) is absolutely continuous on a<x<<b, with

Yy(a)=y(b)=0. Then
b rn n(b——a,) Sb ! n+1

(12) Salyy ar< O 1@ Pz, w1,

We observe that Opial’s inequality (1) is a special case obtained
by taking n=1, a=0, and b=h.

In order to generalize Theorems 4 and 5 we prove the following
lemmas.

Lemma 7. If y(x) is absolutely continuous on a<x<X, with
y(@)=0. Then

@3 mtw)| [y de<nE—ay | |y@ Prde, m 1.

Proof. Define z(x)=§x [y'@t)|"dt. Then z2'(x)=|%'(x)|* for
a<z<X, and then
4 , £ (n+1)/n £ , 1n
v@ (<[ Tv@ia<([a)" ([ ve ra) " <@—ae-re@ye.
Hence
(m+n)gx I ymym l dx<(m+n)SX(X——a)’”‘”*"’”z’”/”z’dx

__-n(X___a)m(n—-l)/'a(z(X))(m+n)/n.
Thus (13) follows immediately.
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Lemma 8. If y(x) is absolutely continuous on X<a<b, with
y(b)=0. Then

(14) (m+n)§: Ly dx<n(b—X)’”S: ly Pde, m,n>1.

Proof. Define ()= —S" |y/(£) ["dé. Then 2/(x)=|y/(x) |* for X<
x<b, and )
@) <[ 19@ | de<o-X) (st
Hence ’
(m+n)§; ' | dm<(m+n)S:(b—X)”“”““’”(——z)"‘/'”z'dx

_____n(b_X)m('n—l)/n(_z(X))(M+n)/n.
Thus (14) follows immediately.
If we take X=(a+b)/2 in Lemma 7 and Lemma 8, we have
Theorem 6. If y(x) is absolutely continuous on a<x<b, with
y(a)=y(b)=0, then

b
RALE

n (b——~a
m—+n\ 2

Opial’s inequality (1) is a special case that m=n=1, a=0, and
b=h.

m(b
V1w evda, m,n>1,

References

[1] Z. Opial: Sur une inégalite. Ann. Polon. Math., 8, 29-32 (1960).

[2] C. Olech: A simple proof of a certain result of Z. Opial. Ann. Polon. Math.,
8, 61-63 (1960).

[8] P. R. Beesack: On an integral inequality of Z. Opial. Tran. Amer. Math.
Soc., 104, 470-475 (1962).

[4] N. Levinson: On an inequality of Opial and Beesack. Proc. Amer. Math.
Soc., 15, 565-566 (1964).

[5] C. L. Mallows: An even simpler proof of Opial’s inequality. Proc. Amer,
Math. Soc., 16, 173 (1965),

[6] R. N. Pederson: On an inequality of Opial, Beesack, and Levinson. Proc.
Amer. Math. Soc., 16, 174 (1965).



