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Fundamental Equations of Branching
Markov Processes

By Nobuyuki IKEDA, Masao NAGASAWA, and Shinzo WATANABE
Osaka University, Tokyo Institute of Technology, and Kyoto University

(Comm. by Kinjir5 Kvsu(I, M.Z.A., March 12, 1966)

We have given in the previous paper 2 a definition of branching
Markov processes and discussed some fundamental properties of them.
Here we shall treat several fundamental equations which describe
and characterize these processes.

1. Fundamental quantities of branching Markov processes.
In this paper we shall use constantly the notation) and the

terminolog adopted in [2J.
Definition 1.1, Let Xt be a branching Markov process (abbre-

viated as B.M.P.) on S. We denote the killed process on S" of X at
the first branching time v by Xt() and call it the non branching
part on S" of B.M.P. Xt. The non branching part on S is called
simply the non branching part of Xt, and its semi-group on B(S)
is defined by
(1.1) T:f(x)-Ef(X,); t< v, f e B(S), x e S.
Further we denote
(1.2) K(x, dt,dy)--P_v e dr, X_ e dy, x e S, dyS.)

Definition 1.2. Assume that there exists a system {q.(x); n--
O, 2, 3,..., + } of non-negatives Borel measurable functions on S and
a system {7,(x, dy); n=0, 2, ..., + } of non-negatives kernels) on
S S such that
(1.3) P[X e dy[X_]=7(X_,dy),

almost surely (P) on {v< }, x e S, dycS, where we put

(1.4) 7(x, dy)= ,* q(x)z(X, dy S),
----0

and ,* denotes the sum over n=0, 2,..., + and S-{z/}. Then
--0

we shall call {q., ., n= 0, 2, ..., +} the branching system of
B.M.P. Xt. It is clear that if a kernel (x, dy) on S S satisfing
(1.3) is given, then the system
(1.5) q.(x)-- 7(x, S), 7,(x, dr)-- 7(x, dy)/q,(x), n= O, 2,..., +
is the branching system of B.M.P. Xt.

The above defined {T, K, q, 7} are fundamental quantities of
B.M.P. which completely determine the B.M.P. X,. In this paper

1) In 2, branching Markov processes are denoted by xt, but in the following
we write it as Xt.

2) We write as Xo--=limXt, for any random time a.
tsar

3) =(x, dy) is said to be a non-negative kernel on SS, if for any Borel set
BS, u(., B) is a Borel measurable function on S and for any x e S, =(x, .) is a
non-negative measure on S with total mass less than 1.
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we shall discuss some equations defined through { T, K, q, 7}. More
detailed study on these equations and the construction of a B.M.P.
through these equations will be given in the forthcoming papers.

Now, we assume in the tollowing { Tt, K, q, } are given a
prioi independent of B.M.P. X. Namely,

Definition 1.:. Let {Tt, K, q, } be a system satisfying the
following conditions:

1) Given a Markov process X--{X, 0, p0, x e S} on S and
assume X0_ e S exists, where 0 is the life time of X, then Tt and
K are defined by

(1.6) Tf()=Ef(Xt); < o, e S, f e B(S), and
[K(x, dr, .dy)--poo e dr, Xo_ e dy, x e S, dycS.

2 a) {q(x);n=O, 2, ..., +} is a system of non-negative
measurable functions such as

(1.7) ,* q(x)-1, x e S, and

b) {(x, dy); n=O, 2, ..., / } is a system of non-negative kernels
on S S" satisfying
(1.8) (x, S)= 1, x e S, n-0, 2, ..., + .
Then we call {Tt, K, q, 7} (or {Tt, K, } where is given by (1.5))
a fundamental system. If these are given by Definitions 1.1 and
1.2., we call them the fundamental system of B.M.P. Xt.

2. Some preparatory results. We need the following Lemmas.
Put

(2.1) C*(S)-{f; fe C(S) and ][f[[<l}, and
-(S)-{f; f e C(S) and

The non-negative part of C*(S) is denoted by C*(S)+.
Lemma 2.1. i) The linear hull of {]] s; f e C*(S)+} is dense in

C(S’). ii) The linear hull of {]; f e C*(S)+} is dense in Co(S).)
Lemma 22. Let , , ..., be signed measures on

of bounded total variations. Then i) there exists one and only one
signed measure / on S-{A}, such as

Is_,fd= Is_Z, for any f e C*(S).
We denote

Then we have ii)

and

’=1
Hence if . are non-negative, / is non-negative, and if are prob-
ability measures then / is so.

Definition 2.1. For f e B*(S) and g e B(S)6 put
4) C(S) {f; f is bounded continuous on S}, C(S) {f: f is. bounded continuous

on S}, and Co(S)= {f;f is bounded continuous on S with f(z0=0}.
5) ]1 and I,’l denote the total variations of/ and ,j, respectively.

6) B(S)= {f;f is bounded Borel measurable}, B*(S)(B*(S))= [ f; feB(S),
(resp.
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"J, g(xk) ]-I f(xj), if x e S and (xl, "’, x.) e x,(2.2)
0, if x=

If f e C*(S) and g e C(S), then clearly (f g e Co(S).
Definition 2.2. For fe(S) put

(2.3) Fx,f-
Then F defines a non-linear operator on B*(S) into B(S).

Theorem 2.1. Let {T, K, } be a fundamental system of
Definition 1.3. Then:

1) For n-0,2,3, ..., +) there exists a unique non-negative
kernel T(t, x, rig) on S S such as

(2.) T(t, x, g)f()- Tgf(x), for f e C*(S) ag x e S,
2

for any f e C*(S),
and
(2.6) (x, 0,

3 For fe B(S), we put

T:f(x)-
S

Then { T:, } satisfies
T:+(x, [0, t S)-,

and
(x, 0,. Fundamental equations of B.M.P. In this section we
assume that we are given a fundamental system {T:, K,} of
Definition 1.3., and let T: and be those of Theorem 2.1.

.1. M.equation.
Definition .1. For f e C(S), consider the following equation

whieh we eall Moal eqaio (M-equation) eorresonding to { Tg, K, }.
A solution of (8.1) is called a solution of M-equation for the initial value
f.

Theorem 3.1. Suppose ha a B.M.P. Xt has the branching
system and satisfies the condition (c. 3) of Theorem i in 2. Let
Tt be the semi-group of B.M.P. Xt. Then

ut(x)- Ttf(x)
is a solution of M-equation corresponding
of X, for the initial value f e Co(S).

Proof is easily performed using Theorem 1 in [2 and so-called
Dynkin’s formula [1.

7) For n=+, put T0(t,,{a})=l.
8) Moyal [3 called this (p0, r)_condition.
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3.2. S.equation.
Definition 3.2. Consider for f e C(S), the iollowing equation

(3.2) u(x)-- T(x)+ I:IK(x’ ds, dy)Fy, u_, x e S,
and we call it Skorohod equation (S-equation) corresponding to
{Tt, K, 7}.)

Theorem 3.2. (Skorohod 5) Suppose a B.M.P. Xs has the
branching system, then

us(x)-- rtf(x), x e S,
is a solution of S-equation corresponding to the system {Tt, K,
of Xt for initial value f e C(S), where T is the semi-group of
B.M.P. Xt.

3.3. Semi.linear parabolic equation (backward equation).
We now set an assumption.
Assumption 1. {T, K, zr} of Definition 1.3 satisfies the following

conditions:
1) The Markov process X in 1) of Def. 1.3. is obtained as

follows" Given a strongly continuous semi-group U on C(S) satis-
fying U1--1, and a function k e C(S)+, let X be the Hunt process

corresponding to Us. Then Xt is the exp(-I[k(8)ds)-subprocess
of

2) The kernel z(x, dg) defines F[.,f e C(S)+ for anyf e C*(S)+.TM
Now let (R) (resp. (0) be the generator (Hille-Yosida sense [6)

of U (resp. T) and ((R)) (resp.((R))) be its domain, then we have
((R))_ ((R)0) and o_(R)_k,

and K is given by (el. [4)

IoI K(x, ds, dy)f(Y)-Io T(kf)(x)ds, f e C(S), xe S"
Definition 3.3. Consider the following equation

ut ou+ kF_., u,
=(u,+ k(FE., u,] -u,),

and we call it the semi-linear parabolic e.quation (backward equation)
corresponding to {T, K,

Theorem 3.3. Suppose a B.M.P. Xt has the branching system
and satisfies the Assumption 1. Then i) the semi-group Tt of
is strongly continuous on Co(S). Let G be its ganerator. If
0 <__f< 1 and fe ((R)o), then ] e (G) and
(3.4) Gf(x)--(f (R)f/ kFE., f>(x), x e S.
ii) For 0 <___f 1 and fe )((R)o),

u(x)-- Tf(x), x e S,
is a solution of (3.3)corresponding to the system {Tt, K, } of Xt,
which satisfies

I] u f l---O (t 0).
9) Notice that M-equation is an equation on S, while S-equation is defined on S.

10) If Tt is strongly Feller, we need not assume 2).
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if this limit exists.
Definition 3.4.

equation

(3.5)

where

3.4. Forward equation. Assumption 1 is set. Let
)+-- {f; f e C(S), O<f< 1},

and let A(f) be a functional defined on +. A functional derivative
of A(f) at foe )+ towards g e C(S) is defined by

lim A(fo+ eg) A(fo)

We denote it by DA(fo).
Consider, for f + ((R)0), the following

5A(t, f) Do(,A(t f),
5t

c(f) 3f+ k( )F[. f
We call (3.5) forward equation corresponding to {T,, K, }.

Theorem 3.4. Suppose a B.M.P. X has the branching system
and satisfies the Assumption 1, then if we put for x e S-{2},

Ax(t, f)- Tf(x), fe 3+ ((o),
i is a solution of the forward equation corresponding to the system
{T,, K, } of X with the initial condition

A(O+, f)---f(x).
3.;. Equation of the mean number of particles.
Definition 3.;. For f B(S), put

(3.6) f(x)- =f(x)’ if x e S, (x, ..., x) e x,

0, if x-3 or
Then f(x) is a measurable function on S.

Definition 3.6. Put for non-negative f e B(S),
G(x, f)- c(x, dy)f(y)(y),,

S

and consider an equation
1 TOt(ef)(x)+ K(x, ds dy)G(y, ut_,),(3.7) ut(x)-- s

where e(x)=P[e=+ (e is the explosion time). We call (3.7)
the (generalized)equation of the mean number of particles corres-
ponding to { Tt, K, }.

We introduce
Assumption 2. 1) For f e C(S), G(., f) e C(S), and

II G(.,f)II<__MIIfll, (M is a positive constant).
2 e(x) e C(S) and e>0 on S.
Definition 3.7. Under Assumptions 1 and 2, we put

u. 1 (R)O(eut +kG(., ut),
e

1 (eu,)

11) For f=f+-f-, we put G(x,f)=G(x,f+)-G(x,f-) if the right hand side
is definite.
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and we call (3.8) the (parabolic) equation of the mean umber of
particles.

Theorem 3.5. Suppose a B.M.P. X has the branching system
and 0 e(x) <__ 1, x S. Put, for f B(S) and f>__ 0

(3.9) Hf(x)- 1 T(f)(x).
(x)

Then it satisfies
H,+,f(x)--H,H,f(x), x e S,

and, if f e C(S), then
u,(x)= Htf(x)

is a solution of (3.7) corresponding to the system {T, K, 7} of Xt
with initia vaue f.

Moreover if B.M.P. Xt satisfies Assumptions and 2, then
Ht is a strongly continuous semi-group on C(S) with

II H, IIe*, (c is a positive constant),
and if ere )(ffo), then cut (o) and ut is a solution of (3.8)
satisfying

II u-fllO (t & o).
Remark. If e=1 and if we put f=l, then we have

(8.10) HI(x)=E [the number of particles at t3,
which represents the mean number of particles at t.
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