58. On Conditions for the Orthomodularity

By Shûichirô MAEDA

Ehime University

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

1. Introduction. The lattice of projections of a von Neumann algebra is an orthocomplemented lattice (a lattice equipped with an orthocomplementation $a \rightarrow a^{\perp}$) with a weak modularity (M) introduced by Loomis [2]. Such a lattice is called an orthomodular lattice (see [3], Remark 4.1). The condition (M) for the orthomodularity is equivalent to that "if $a \leq b$ then a, a^{\perp}, b satisfy some distributive relation". Piron [5] has shown that the logic of quantum mechanics forms an orthomodular lattice by the reason that "if $a \leq b$ then the sublattice generated by $a, a^{\perp}, b, b^{\perp}$ is distributive". This condition is also equivalent to (M).

On the other hand, Nakamura [4] has defined the permutability of a, b by some distributive relation and proved that the condition (M) is equivalent to that this permutability is symmetric. Moreover, Foulis [1] has given some other conditions like this.

The purpose of this paper is to find all the conditions of these types.

2. D-relations. Let L be an orthocomplemented lattice where the orthocomplementation is denoted by $a \rightarrow a^{\perp}$. For a, b, $c \in L$, we write (a, b, c)D in case $(a \cup b) \cap c = (a \cap c) \cup (b \cap c)$, and write $(a, b, c)D^*$ in case $(a \cap b) \cup c = (a \cup c) \cap (b \cup c)$.

Definition. Two elements $a, b \in L$ are said to be *commutative* if the sublattice generated by $a, a^{\perp}, b, b^{\perp}$ is distributive. We denote aDb if every distributive relation for $a, a^{\perp}, b, b^{\perp}$ holds. (Obviously, if a and b are commutative then aDb.) Since $(a, b, c)D \iff (b, a, c)D$ and $(a, b, c)D^* \iff (a^{\perp}, b^{\perp}, c^{\perp})D$ for every $a, b, c \in L$, aDb is equivalent to that the following twelve D-relations hold.

$D_{\scriptscriptstyle 1}$: (a, a^{\perp}, b) D	$D_{\scriptscriptstyle 13}$: $(b^{\perp}, a^{\perp}, a)D$	$D_{\scriptscriptstyle 14}$: ($b^{\scriptscriptstyle \perp}$, $a, a^{\scriptscriptstyle \perp}$) D
$D_{\scriptscriptstyle 2}$: (a, a^{\perp} , b^{\perp}) D	$D_{_{23}}:(b,\ a^{\perp},\ a)D$	$D_{{}_{24}}:(b,a,a^{\perp})D$
$D_{\mathfrak{s}}:(b, b^{\perp}, a)D$	$D_{\scriptscriptstyle 31}$: $(a^{\perp},\ b^{\perp},\ b)D$	$D_{_{32}}$: $(a^{\perp}, b, b^{\perp})D$
D_4 : $(b, b^{\perp}, a^{\perp})D$	$D_{_{41}}$: (a, b ^{\perp} , b)D	$D_{{}_{42}}$: (a, b, b^{\perp}) D

Lemma 1. D_i implies D_{ij} (i=1, 2 and j=3, 4; j=3, 4 and j=1, 2). Proof. D_1 means $b=(a \cap b) \cup (a^{\perp} \cap b)$. From this, we have $b \cup a^{\perp} = (a \cap b) \cup a^{\perp}$, $b \cup a = (a^{\perp} \cap b) \cup a$, and hence $b^{\perp} \cap a = (a^{\perp} \cup b^{\perp}) \cap a, b^{\perp} \cap a^{\perp} = (a \cup b^{\perp}) \cap a^{\perp}$ by the orthocomplementation. Therefore, D_{13} and D_{14} hold. The other implications can be proved similarly. Lemma 2. (i) If $a \leq b$, then D_1 (resp. D_4) is equivalent to D_{14} (resp. D_{41}) and the other eight D-relations hold.

(ii) If $b \leq a$, then D_2 (resp. D_3) is equivalent to D_{23} (resp. D_{32}) and the other eight D-relations hold.

(iii) If $a \leq b^{\perp}$, then D_2 (resp. D_4) is equivalent to D_{24} (resp. D_{42}) and the other eight D-relations hold.

(iv) If $b^{\perp} \leq a$, then D_1 (resp. D_3) is equivalent to D_{13} (resp. D_{31}) and the other eight D-relations hold.

Proof. (i) If $a \leq b$, then $b^{\perp} \leq a^{\perp}$, and $a \cap b^{\perp} = 0$. Hence, we have $(a \cap b^{\perp}) \cup (a^{\perp} \cap b^{\perp}) = b^{\perp} = (a \cup a^{\perp}) \cap b^{\perp}$ and $(b \cap a) \cup (b^{\perp} \cap a) = a = (b \cup b^{\perp}) \cap a$, that is, D_2 and D_3 hold. It follows from Lemma 1 that D_{23} , D_{24} , D_{31} , D_{32} hold. Moreover, D_{13} and D_{42} hold since $(b^{\perp} \cap a) \cup (a^{\perp} \cap a) = 0 = (b^{\perp} \cup a^{\perp}) \cap a$ and $(a \cap b^{\perp}) \cup (b \cap b^{\perp}) = 0 = (a \cup b) \cap b^{\perp}$. Next, since D_1 and D_{14} mean the relations $b = a \cup (a^{\perp} \cap b)$ and $(b^{\perp} \cup a) \cap a^{\perp} = b^{\perp}$ respectively, they are equivalent by the orthocomplementation. Similarly, D_4 and D_{41} are equivalent. (ii) is implied from (i) by the exchange $a \leftrightarrow b$. (iii) and (iv) are implied from (i) and (ii) by the exchange $b \leftrightarrow b^{\perp}$.

3. Conditions for the orthomodularity. Definition. A pair (a, b) of elements of a lattice is called a *modular pair* and write (a, b)M if $(c \cup a) \cap b = c \cup (a \cap b)$ for every $c \leq b$. An orthocomplemented lattice L is called *orthomodular* if $(a, a^{\perp})M$ holds for every $a \in L$, or equivalently, if $a \perp b$ $(a \leq b^{\perp})$ implies (a, b)M (see [3], Theorem 4.1 and Remark 4.1).

Theorem 1. Let L be an orthocomplemented lattice. The following statements are equivalent.

(α) L is orthomodular.

 (β_1) (resp. (β'_1) , (β''_1) , (β''_1)) If $a \leq b$, then D_1 (resp. D_4 , D_{14} , D_{41}) holds.

 (β_2) (resp. (β'_2) , (β''_2) , (β''_2)) If $b \leq a$, then D_2 (resp. D_3 , D_{23} , D_{32}) holds.

 (β_3) (resp. (β'_3) , (β''_3) , (β''_3)) If $a \leq b^{\perp}$, then D_2 (resp. D_4 , D_{24} , D_{42}) holds.

 (β_4) (resp. (β'_4) , (β''_4) , (β''_4)) If $b^{\perp} \leq a$, then D_1 (resp. D_3 , D_{13} , D_{31}) holds.

(γ) If $a \leq b$, then aDb.

(b) If $a \leq b$, then a and b are commutative.

Proof. The implications $(\delta) \Rightarrow (\gamma) \Rightarrow (\beta_i^{(\nu)})$ $(i=1, 2, 3, 4; \nu=0, 1, 2, 3)$ are trivial. $(\beta_1) \Rightarrow (\gamma)$. Assume that $a \leq b$ implies D_1 : $(a, a^{\perp}, b)D$. Then, since $a \leq b \Leftrightarrow b^{\perp} \leq a^{\perp}$, $a \leq b$ implies D_4 : $(b^{\perp}, b, a^{\perp})D$. Hence, it follows from Lemma 2 (i) that $a \leq b$ implies all *D*-relations. The other implications $(\beta_i^{(\nu)}) \Rightarrow (\gamma)$ can be proved similarly. $(\gamma) \Rightarrow (\delta)$. If $a \leq b$ and (γ) holds, then we have $a \cup (a^{\perp} \cap b) = b$ and $b \cup (b^{\perp} \cap a) = a$. Then, the eight elements $\{0, a, a^{\perp} \cap b, b^{\perp}, b, a \cup b^{\perp}, a^{\perp}, 1\}$ form a distributive sublattice, and hence a and b are commutative. $(\alpha) \iff (\beta)$. $(a, a^{\perp})M$ means that $b \leq a$ implies $b = (b \cup a^{\perp}) \cap a$, that is, $b \leq a$ implies D_{23} . Hence $(\alpha) \iff (\beta'_2)$. This completes the proof.

Remark 1. The condition (M) in Loomis [2] means that $a \leq b$ implies $(a^{\perp}, b, a)D^*$, that is, $a \leq b$ implies D_{14} . The condition (M_2) means that $a \leq b^{\perp}$ implies D_{42} . The condition "faiblement modulaire" in Piron [5] means that $a \leq b$ implies D_{41} .

Definition. In an orthocomplemented lattice L, we shall call the eight implications " $D_i \Rightarrow D_{ij}$ " (i=1, 2, j=3, 4; i=3, 4, j=1, 2) D-implications of type I, the eight implications " $D_i \Rightarrow D_{ji}$ " D-implications of type II, the eight implications " $D_{ij} \Rightarrow D_{ji}$ " D-implications of type III and the other 108 implications D-implications of type IV. (The total number of D-implications is ${}_{12}P_2=132$.)

It follows from Lemma 1 that *D*-implications of type I always hold, and it is easy to show by the exchanges $(a, b) \leftrightarrow (b, a)$, $(a, b) \leftrightarrow (a, b^{\perp})$, $(a, b) \leftrightarrow (a^{\perp}, b)$ that *D*-implications of type II are mutually equivalent and so are *D*-implications of type III.

Theorem 2. Let L be an orthocomplemented lattice. The following statements are equivalent.

(α) L is orthomodular.

(β) One of the D-implications of type IV holds.

(γ) All the D-implications hold, that is, all the D-relations are mutually equivalent.

Proof. $(\gamma) \Rightarrow (\beta)$ is trivial. We shall prove $(\beta) \Rightarrow (\alpha)$. For example, let " $D_1 \Rightarrow D_2$ " hold. If $b \leq a$, then D_1 holds by Lemma 2 (ii) and then D_2 holds. It follows from Theorem 1 $((\beta_2) \Rightarrow (\alpha))$ that L is orthomodular. If we assume one of the other D-implication of type IV, then similarly we can prove that L is orthomodular by Lemma 2 and Theorem 1. To prove $(\alpha) \Rightarrow (\gamma)$, we shall show that if L is orthomodular then $D_{ij} \Rightarrow D_j$, for example $D_{13} \Rightarrow D_3$. It follows from $(a \cap b, a^{\perp} \cup b^{\perp})M$ that $[a^{\perp} \cup (a \cap b)] \cap (a^{\perp} \cup b^{\perp}) = a^{\perp}$, which implies $a = (a \cap b) \cup [a \cap (a^{\perp} \cup b^{\perp})]$. It follows from D_{13} that $(b^{\perp} \cup a^{\perp}) \cap a = b^{\perp} \cap a$. Hence $a = (a \cap b) \cup (a \cap b^{\perp})$ which means D_3 holds. For every i, j, we have $D_{ij} \Rightarrow D_j$ by the same way. Now, since $D_i \Rightarrow D_{ij}$ by Lemma 1, we have the following cyclic implications: $D_i \Rightarrow D_{ij} \Rightarrow D_j \Rightarrow D_{ji} \Rightarrow D_i$. Hence all the D-relations are equivalent. This completes the proof.

Remark 2. The condition "symmetric" in Nakamura [4] is " $D_3 \Rightarrow D_1$ ". The conditions given by Foulis [1] are " $D_1 \Rightarrow D_{23}$ " and " $D_{41} \Rightarrow D_{23}$ ".

Corollary. Let a, b be elements of an orthomodular lattice L. The following statements are equivalent. (α) a and b are commutative.

 (β) aDb.

(γ) One of the twelve D-relations holds.

Proof. The implications $(\alpha) \Rightarrow (\beta) \Rightarrow (\gamma)$ are trivial. $(\gamma) \Rightarrow (\beta)$ is an immediate consequence of the theorem. $(\beta) \Rightarrow (\alpha)$ is a consequence of $\lceil 1 \rceil$, Lemma 3 and Theorem 5.

Theorem 3. For two elements a, b of an orthocomplemented lattice L, we write $a \leftrightarrow b$ in case $a \cup (b \cap a^{\perp}) = b \cup (a \cap b^{\perp})$ (see Piron [5]). The following statements are equivalent.

- (α) L is orthomodular.
- (β_1) If $a \leq b$ then $a \leftrightarrow b$.

 (β_2) If $a \leq b$ then $a^{\perp} \leftrightarrow b^{\perp}$.

 $(\gamma) \quad a \leftrightarrow b \quad implies \quad a \leftrightarrow b^{\perp}.$

(δ) $a \leftrightarrow b$ implies aDb.

Proof. $a \leftrightarrow b$ is equivalent to both of the two equations $a \cup (b \cap a^{\perp}) = a \cup b$ and $b \cup (a \cap b^{\perp}) = a \cup b$, that is, D_{14} and D_{32} . Hence, (β_1) implies (β'_1) of Theorem 1 and is implied from (γ) of Theorem 1. Therefore, $(\beta_1) \iff (\alpha)$. $(\beta_1) \iff (\beta_2)$ is obvious. $(\alpha) \Rightarrow (\delta)$ follows from Theorem 2, and $(\delta) \Rightarrow (\gamma)$ is trivial. Finally, we assume (γ) . If $a \leq b^{\perp}$, then $a \leftrightarrow b$ holds by Lemma 2 (iii), and then we have $a \leftrightarrow b^{\perp}$, which implies D_{24} . Hence, L is orthomodular by Theorem 1. This completes the proof. (The main part of this theorem has proved by Piron.)

Remark 3. (i) The implications " $a \leq b \Rightarrow a \leftrightarrow b^{\perp}$ " and " $a \leq b \Rightarrow a^{\perp} \leftrightarrow b$ " always hold.

(ii) " $a \leftrightarrow b \Rightarrow a^{\perp} \leftrightarrow b^{\perp}$ " is not equivalent to the orthomodularity, since it is implied from *D*-implications of type III (cf. Supplement).

Corollary. Let a, b be elements of an orthomodular lattice. $a \leftrightarrow b$ if and only if a and b are commutative.

4. Supplement. We consider the following four statements.

(α) L is orthomodular.

(β) L is orthocomplemented and the D-implications of type III hold.

(γ) L is orthocomplemented and the D-implications of type II hold.

(δ) L is orthocomplemented.

Then we have implications $(\alpha) \Rightarrow (\beta) \Rightarrow (\gamma) \Rightarrow (\delta)$. The preceding figures give examples such that $(\alpha) \notin (\beta) \notin (\gamma) \notin (\delta)$.

In the lattice L_1 , for any two elements x, y, we have $x \leq y$ or $y \leq x$ or $x \leq y^{\perp}$ or $y^{\perp} \leq x$. Hence, L_1 satisfies (β) by Lemma 2, but is not orthomodular. In the lattice L_2 , for the elements a and b, D_{24} holds but D_{42} does not. Hence, L_2 does not satisfy (β). For a and b, D_1 , D_2 , D_3 , and D_4 do not hold. Hence, it is easy to verify that L_2 satisfies (γ). In the lattice L_3 , for a and b, D_2 holds but D_{42} does not satisfy (β).

References

- [1] D. J. Foulis: A note on orthomodular lattices. Portugal. Math., 21, 65-72 (1962).
- [2] L. H. Loomis: Lattice theoretic background of the dimension theory of operator algebras. Mem. Amer. Math. Soc., No. 18 (1955).
- [3] F. Maeda: Decompositions of general lattices into direct summands of types I, II, and III. J. Sci. Hiroshima Univ., Ser. A, 23, 151-170 (1959).
- [4] M. Nakamura: The permutability in a certain orthocomplemented lattice.
 Kôdai Math. Sem. Rep., 9, 158-160 (1957).
- [5] C. Piron: Axiomatique quantique. Helv. Phys. Acta, 37, 439-468 (1964).