58. On Conditions for the Orthomodularity

By Shûichirô Maeda
Ehime University
(Comm. by Kinjirô Kunugi, m.J.A., March 12, 1966)

1. Introduction. The lattice of projections of a von Neumann algebra is an orthocomplemented lattice (a lattice equipped with an orthocomplementation $a \rightarrow a^{\perp}$) with a weak modularity (M) introduced by Loomis [2]. Such a lattice is called an orthomodular lattice (see [3], Remark 4.1). The condition (M) for the orthomodularity is equivalent to that "if $a \leqq b$ then a, a^{\perp}, b satisfy some distributive relation". Piron [5] has shown that the logic of quantum mechanics forms an orthomodular lattice by the reason that "if $a \leqq b$ then the sublattice generated by $a, a^{\perp}, b, b^{\perp}$ is distributive". This condition is also equivalent to (M).

On the other hand, Nakamura [4] has defined the permutability of a, b by some distributive relation and proved that the condition (M) is equivalent to that this permutability is symmetric. Moreover, Foulis [1] has given some other conditions like this.

The purpose of this paper is to find all the conditions of these types.
2. D-relations. Let L be an orthocomplemented lattice where the orthocomplementation is denoted by $a \rightarrow a^{\perp}$. For $a, b, c \in L$, we write $(a, b, c) D$ in case $(a \cup b) \cap c=(a \cap c) \cup(b \cap c)$, and write $(a, b, c) D^{*}$ in case $(a \cap b) \cup c=(a \cup c) \cap(b \cup c)$.

Definition. Two elements $a, b \in L$ are said to be commutative if the sublattice generated by $a, a^{\perp}, b, b^{\perp}$ is distributive. We denote $a D b$ if every distributive relation for $a, a^{\perp}, b, b^{\perp}$ holds. (Obviously, if a and b are commutative then $a D b$.) Since $(a, b, c) D \Longleftrightarrow(b, a, c) D$ and $(a, b, c) D^{*} \Longleftrightarrow\left(a^{\perp}, b^{\perp}, c^{\perp}\right) D$ for every $a, b, c \in L, a D b$ is equivalent to that the following twelve D-relations hold.

$D_{1}:\left(a, a^{\perp}, b\right) D$	$D_{13}:\left(b^{\perp}, a^{\perp}, a\right) D$	$D_{14}:\left(b^{\perp}, a, a^{\perp}\right) D$
$D_{2}:\left(a, a^{\perp}, b^{\perp}\right) D$	$D_{23}:\left(b, a^{\perp}, a\right) D$	$D_{24}:\left(b, a, a^{\perp}\right) D$
$D_{3}:\left(b, b^{\perp}, a\right) D$	$D_{31}:\left(a^{\perp}, b^{\perp}, b\right) D$	$D_{32}:\left(a \perp, b, b^{\perp}\right) D$
$D_{4}:\left(b, b^{\perp}, a^{\perp}\right) D$	$D_{41}:\left(a, b^{\perp}, b\right) D$	$D_{42}:\left(a, b, b^{\perp}\right) D$

Lemma 1. D_{i} implies $D_{i j}(i=1,2$ and $j=3,4 ; j=3,4$ and $j=1,2)$.
Proof. $\quad D_{1}$ means $b=(a \cap b) \cup\left(a^{\perp} \cap b\right)$. From this, we have $b \cup a^{\perp}=$ $(a \cap b) \cup a^{\perp}, b \cup a=\left(a^{\perp} \cap b\right) \cup a$, and hence $b^{\perp} \cap a=\left(a^{\perp} \cup b^{\perp}\right) \cap a, b^{\perp} \cap a^{\perp}=$ $\left(a \cup b^{\perp}\right) \cap a^{\perp}$ by the orthocomplementation. Therefore, D_{13} and D_{14} hold. The other implications can be proved similarly.

Lemma 2. (i) If $a \leqq b$, then $D_{1}\left(\operatorname{resp} . D_{4}\right)$ is equivalent to D_{14} (resp. D_{41}) and the other eight D-relations hold.
(ii) If $b \leqq a$, then D_{2} (resp. D_{3}) is equivalent to $D_{23}\left(r e s p . D_{32}\right)$ and the other eight D-relations hold.
(iii) If $a \leqq b^{\perp}$, then D_{2} (resp. D_{4}) is equivalent to $D_{24}\left(\right.$ resp. $\left.D_{42}\right)$ and the other eight D-relations hold.
(iv) If $b^{\perp} \leqq a$, then $D_{1}\left(\right.$ resp.$\left.D_{3}\right)$ is equivalent to D_{13} (resp. D_{31}) and the other eight D-relations hold.

Proof. (i) If $a \leqq b$, then $b^{\perp} \leqq a^{\perp}$, and $a \cap b^{\perp}=0$. Hence, we have $\left(a \cap b^{\perp}\right) \cup\left(a^{\perp} \cap b^{\perp}\right)=b^{\perp}=\left(a \cup a^{\perp}\right) \cap b^{\perp}$ and $(b \cap a) \cup\left(b^{\perp} \cap a\right)=a=\left(b \cup b^{\perp}\right) \cap a$, that is, D_{2} and D_{3} hold. It follows from Lemma 1 that D_{23}, D_{24}, D_{31}, D_{32} hold. Moreover, D_{13} and D_{42} hold since $\left(b^{\perp} \cap a\right) \cup\left(a^{\perp} \cap a\right)=0=$ $\left(b^{\perp} \cup a^{\perp}\right) \cap a$ and $\left(a \cap b^{\perp}\right) \cup\left(b \cap b^{\perp}\right)=0=(a \cup b) \cap b^{\perp}$. Next, since D_{1} and D_{14} mean the relations $b=a \cup\left(a^{\perp} \cap b\right)$ and $\left(b^{\perp} \cup a\right) \cap a^{\perp}=b^{\perp}$ respectively, they are equivalent by the orthocomplementation. Similarly, D_{4} and D_{41} are equivalent. (ii) is implied from (i) by the exchange $a \leftrightarrow b$. (iii) and (iv) are implied from (i) and (ii) by the exchange $b \leftrightarrow b^{\perp}$.
3. Conditions for the orthomodularity. Definition. A pair (a, b) of elements of a lattice is called a modular pair and write $(a, b) M$ if $(c \cup a) \cap b=c \cup(a \cap b)$ for every $c \leqq b$. An orthocomplemented lattice L is called orthomodular if (a, a^{\perp}) M holds for every $a \in L$, or equivalently, if $a \perp b$ ($a \leqq b^{\perp}$) implies (a, b) M (see [3], Theorem 4.1 and Remark 4.1).

Theorem 1. Let L be an orthocomplemented lattice. The following statements are equivalent.
(α) L is orthomodular.
$\left(\beta_{1}\right)\left(\operatorname{resp} .\left(\beta_{1}^{\prime}\right),\left(\beta_{1}^{\prime \prime}\right),\left(\beta_{1}^{\prime \prime \prime}\right)\right)$ If $a \leqq b$, then $D_{1}\left(\operatorname{resp} . D_{4}, D_{14}, D_{41}\right)$ holds.
$\left(\beta_{2}\right)\left(\operatorname{resp} .\left(\beta_{2}^{\prime}\right),\left(\beta_{2}^{\prime \prime}\right),\left(\beta_{2}^{\prime \prime \prime}\right)\right)$ If $b \leqq a$, then $D_{2}\left(\right.$ resp. $\left.D_{3}, D_{23}, D_{32}\right)$ holds.
$\left(\beta_{3}\right)\left(\operatorname{resp} .\left(\beta_{3}^{\prime}\right),\left(\beta_{3}^{\prime \prime}\right),\left(\beta_{3}^{\prime \prime}\right)\right)$ If $a \leqq b^{\perp}$, then $D_{2}\left(\operatorname{resp} . D_{4}, D_{24}, D_{42}\right)$ holds.
$\left(\beta_{4}\right)\left(\operatorname{resp} .\left(\beta_{4}^{\prime}\right),\left(\beta_{4}^{\prime \prime}\right),\left(\beta_{4}^{\prime \prime \prime}\right)\right)$ If $b^{\perp} \leqq a$, then $D_{1}\left(\operatorname{resp} . D_{3}, D_{13}, D_{31}\right)$ holds.
(γ) If $a \leqq b$, then $a D b$.
(δ) If $a \leqq b$, then a and b are commutative.
Proof. The implications $(\delta) \Rightarrow(\gamma) \Rightarrow\left(\beta_{i}^{(\nu)}\right)(i=1,2,3,4 ; \nu=0,1,2,3)$ are trivial. $\left(\beta_{1}\right) \Rightarrow(\gamma)$. Assume that $a \leqq b$ implies $D_{1}:\left(a, a^{\perp}, b\right) D$. Then, since $a \leqq b \Longleftrightarrow b^{\perp} \leqq a^{\perp}, a \leqq b$ implies $D_{4}:\left(b^{\perp}, b, a^{\perp}\right) D$. Hence, it follows from Lemma 2 (i) that $a \leqq b$ implies all D-relations. The other implications $\left(\beta_{i}^{(\nu)}\right) \Rightarrow(\gamma)$ can be proved similarly. $(\gamma) \Rightarrow(\delta)$. If $a \leqq b$ and (γ) holds, then we have $a \cup\left(a^{\perp} \cap b\right)=b$ and $b \cup\left(b^{\perp} \cap a\right)=a$.

Then, the eight elements $\left\{0, a, a^{\perp} \cap b, b^{\perp}, b, a \cup b^{\perp}, a^{\perp}, 1\right\}$ form a distributive sublattice, and hence a and b are commutative. $(\alpha) \Longleftrightarrow(\beta)$. $\left(a, a^{\perp}\right) M$ means that $b \leqq a$ implies $b=\left(b \cup a^{\perp}\right) \cap a$, that is, $b \leqq a$ implies D_{23}. Hence $(\alpha) \Longleftrightarrow\left(\beta_{2}^{\prime \prime}\right)$. This completes the proof.

Remark 1. The condition (M) in Loomis [2] means that $a \leqq b$ implies $\left(a^{\perp}, b, a\right) D^{*}$, that is, $a \leqq b$ implies D_{14}. The condition (M_{2}) means that $a \leqq b^{\perp}$ implies D_{42}. The condition "faiblement modulaire" in Piron [5] means that $a \leqq b$ implies D_{41}.

Definition. In an orthocomplemented lattice L, we shall call the eight implications " $D_{i} \Rightarrow D_{i j}$ " $(i=1,2, j=3,4 ; i=3,4, j=1,2) D$ - $i m$ plications of type I, the eight implications " $D_{i} \Rightarrow D_{j i}$ " D-implications of type II, the eight implications " $D_{i j} \Rightarrow D_{j i}$ " D-implications of type $I I I$ and the other 108 implications D-implications of type $I V$. (The total number of D-implications is ${ }_{12} P_{2}=132$.)

It follows from Lemma 1 that D-implications of type I always hold, and it is easy to show by the exchanges $(a, b) \leftrightarrow(b, a),(a, b) \leftrightarrow\left(a, b^{\perp}\right)$, $(a, b) \leftrightarrow\left(a^{\perp}, b\right)$ that D-implications of type II are mutually equivalent and so are D-implications of type III.

Theorem 2. Let L be an orthocomplemented lattice. The following statements are equivalent.
(α) L is orthomodular.
(β) One of the D-implications of type $I V$ holds.
(γ) All the D-implications hold, that is, all the D-relations are mutually equivalent.

Proof. $(\gamma) \Rightarrow(\beta)$ is trivial. We shall prove $(\beta) \Rightarrow(\alpha)$. For example, let " $D_{1} \Rightarrow D_{2}$ " hold. If $b \leqq a$, then D_{1} holds by Lemma 2 (ii) and then D_{2} holds. It follows from Theorem $1\left(\left(\beta_{2}\right) \Rightarrow(\alpha)\right)$ that L is orthomodular. If we assume one of the other D-implication of type IV, then similarly we can prove that L is orthomodular by Lemma 2 and Theorem 1. To prove $(\alpha) \Rightarrow(\gamma)$, we shall show that if L is orthomodular then $D_{i j} \Rightarrow D_{j}$, for example $D_{13} \Rightarrow D_{3}$. It follows from $\left(a \cap b, a^{\perp} \cup b^{\perp}\right) M$ that $\left[a^{\perp} \cup(a \cap b)\right] \cap\left(a^{\perp} \cup b^{\perp}\right)=a^{\perp}$, which implies $a=(a \cap b) \cup\left[a \cap\left(a^{\perp} \cup b^{\perp}\right)\right]$. It follows from D_{13} that $\left(b^{\perp} \cup a^{\perp}\right) \cap a=b^{\perp} \cap a$. Hence $a=(a \cap b) \cup\left(a \cap b^{\perp}\right)$ which means D_{3} holds. For every i, j, we have $D_{i j} \Rightarrow D_{j}$ by the same way. Now, since $D_{i} \Rightarrow D_{i j}$ by Lemma 1 , we have the following cyclic implications: $D_{i} \Rightarrow D_{i j} \Rightarrow D_{j} \Rightarrow D_{j i} \Rightarrow D_{i}$. Hence all the D-relations are equivalent. This completes the proof.

Remark 2. The condition "symmetric" in Nakamura [4] is " $D_{3} \Rightarrow D_{1}$ ". The conditions given by Foulis [1] are " $D_{1} \Rightarrow D_{23}$ " and " $D_{41} \Rightarrow D_{23}$ ".

Corollary. Let a, b be elements of an orthomodular lattice L. The following statements are equivalent.
(α) a and b are commutative.
(β) $a D b$.
(γ) One of the twelve D-relations holds.
Proof. The implications $(\alpha) \Rightarrow(\beta) \Rightarrow(\gamma)$ are trivial. $\quad(\gamma) \Rightarrow(\beta)$ is an immediate consequence of the theorem. $(\beta) \Rightarrow(\alpha)$ is a consequence of [1], Lemma 3 and Theorem 5.

Theorem 3. For two elements a, b of an orthocomplemented lattice L, we write $a \leftrightarrows b$ in case $a \cup\left(b \cap a^{\perp}\right)=b \cup\left(a \cap b^{\perp}\right)$ (see Piron [5]). The following statements are equivalent.
(α) L is orthomodular.
$\left(\beta_{1}\right)$ If $a \leqq b$ then $a \leftrightarrow b$.
$\left(\beta_{2}\right)$ If $a \leqq b$ then $a^{\perp} \leftrightarrow b^{\perp}$.
(γ) $a \leftrightarrow b$ implies $a \leftrightarrow b^{\perp}$.
($\delta) ~ a \leftrightarrow b$ implies $a D b$.
Proof. $a \leftrightarrow b$ is equivalent to both of the two equations $a \cup\left(b \cap a^{\perp}\right)=$ $a \cup b$ and $b \cup\left(a \cap b^{\perp}\right)=a \cup b$, that is, D_{14} and D_{32}. Hence, $\left(\beta_{1}\right)$ implies ($\beta_{1}^{\prime \prime}$) of Theorem 1 and is implied from (γ) of Theorem 1. Therefore, $\left(\beta_{1}\right) \Longleftrightarrow(\alpha)$. $\quad\left(\beta_{1}\right) \Longleftrightarrow\left(\beta_{2}\right)$ is obvious. $(\alpha) \Rightarrow(\delta)$ follows from Theorem 2, and $(\delta) \Rightarrow(\gamma)$ is trivial. Finally, we assume (γ). If $a \leqq b^{\perp}$, then $a \leftrightarrow b$ holds by Lemma 2 (iii), and then we have $a \leftrightarrow b^{\perp}$, which implies D_{24}. Hence, L is orthomodular by Theorem 1. This completes the proof. (The main part of this theorem has proved by Piron.)

Remark 3. (i) The implications " $a \leqq b \Rightarrow a \leftrightarrows b^{\perp}$ " and " $a \leqq b \Rightarrow a a^{\perp} \leftrightarrows b$ " always hold.
(ii) " $a \leftrightarrow b \Rightarrow a^{\perp} \leftrightarrow b^{\perp}$ " is not equivalent to the orthomodularity, since it is implied from D-implications of type III (cf. Supplement).

Corollary. Let a, b be elements of an orthomodular lattice. $a \leftrightarrow b$ if and only if a and b are commutative.
4. Supplement. We consider the following four statements.
(α) L is orthomodular.
(β) L is orthocomplemented and the D-implications of type III hold.
(γ) L is orthocomplemented and the D-implications of type II hold.
($\delta) \quad L$ is orthocomplemented.

Then we have implications $(\alpha) \Rightarrow(\beta) \Rightarrow(\gamma) \Rightarrow(\delta)$. The preceding figures give examples such that $(\alpha) \notin(\beta) \notin(\gamma) \nLeftarrow(\delta)$.

In the lattice L_{1}, for any two elements x, y, we have $x \leqq y$ or $y \leqq x$ or $x \leqq y^{\perp}$ or $y^{\perp} \leqq x$. Hence, L_{1} satisfies (β) by Lemma 2 , but is not orthomodular. In the lattice L_{2}, for the elements a and b, D_{24} holds but D_{42} does not. Hence, L_{2} does not satisfy (β). For a and b, D_{1}, D_{2}, D_{3}, and D_{4} do not hold. Hence, it is easy to verify that L_{2} satisfies (γ). In the lattice L_{3}, for a and b, D_{2} holds but D_{42} does not. Hence, L_{3} does not satisfy (γ), but is orthocomplemented.

References

[1] D. J. Foulis: A note on orthomodular lattices. Portugal. Math., 21, 65-72 (1962).
[2] L. H. Loomis: Lattice theoretic background of the dimension theory of operator algebras. Mem. Amer. Math. Soc., No. 18 (1955).
[3] F. Maeda: Decompositions of general lattices into direct summands of types I, II, and III. J. Sci. Hiroshima Univ., Ser. A, 23, 151-170 (1959).
[4] M. Nakamura: The permutability in a certain orthocomplemented lattice. Kôdai Math. Sem. Rep., 9, 158-160 (1957).
[5] C. Piron: Axiomatique quantique. Helv. Phys. Acta, 37, 439-468 (1964).

