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University of Wisconsin, Milwaukee

(Comm. by Kinjir6 KUNUGI, .J.A., March 12, 1966)

1o Introduction. It is well known that a linear space can be
represented using properties of the lattice 4 of all subspaces. Pro-
perties of certain lattice subsets of 4 are used here to realize this
representation. These subsets are designated as point-closed subsys-
tems and a point-modular point-complemented irreducible lattice of
length>__4 is shown to be a characterization of such a point-closed
subsystem. Then a point-modular point-complemented lattice L is
decomposed into a subdirect union of point-modular point-complemented
irreducible lattices and in the case that L is complete into the direct
union. This generalizes the classical representation theory for lat-
tices of the type .

In an application of these results the family of finite dimensional
subspaces of a linear space, being a point-closed subsystem of the
lattice of all subspaces, is characterized lattice-theoretically. A second
application is made to the linear systems of G. W. Mackey 5 for
which he states conditions that a family of subspaces of a (real)
linear space be the family of closed subspaces relative to some
regular linear system constructed on the linear space. Such a family
forms a point-closed subsystem and can be used in the description of
the linear space. Thus the family of closed subspaces of a regular
linear system is characterized lattice-theoretically without the linear
space being given explicitly.

The lattice-theoretic notions not defined here or for which no
reference is given are in agreement with those of Birkhoff 2. Let
the system (L, /,.) be a lattice. For SL and b, ceL,(b,c)M
(read (b, c) modular relative o S) means (a/ b)c-a/ bc for every
aeS such that a_c. For a, beL, a>-b (dually, b-<a) is written
for a covers b. The notations V and / are set-theoretic union
and intersection.

2. Point.modularity and point.complementation. In this
seetion (L, +, .) is a lattiee with zero 0 and P the set of points
in L. The relation M is called point-modularity and L is said
to be point-modular if Me-LL. Also L is said to be point-
complemented if for a, be L such that a<b there exists p>-0 such
that p_b, pa. The following brief development is used later.

Lemma 1. If L is point-complemented and b, c e L such that
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(b, c)Me, b-<b/c $hen bc-<c.
Proof. Let bc. Suppose bca<c. Then bc--ba and b/c=

b/a. Let p>-0 such that pa, pba. Then pb and b<___p/bb-c,
whence p/ b-- b/ c since b-- p/ b implies p_<__ b. Now (p/ b)c--
(b/c)c--c>a>__p/bc contrary to (b, c)Mz. Thus bcc.

It now can be shown that for L point-modular and point-
complemented the Jordan-Dedekind chain condition holds. (This is
done in 3 with the dual condition: bc-<c implies b4b/c.) This
generalizes results of K. Menger _7 for which he uses relative
complementation. The latter (with atomicity) is stronger than point-
complementation and too strong for the application made to linear
systems in Section 6. Further, for L point-complemented and of
finite length, L is modular if and only if it is point-modular.

:. Point.closed subsystems. In this section (A, t2, ) is a
complete complemented modular atomic lattice with zero 0 and unit
i which satisfies
(1) if AA,p-0 such that p__<_JA then pJB for some finite

BA.
Two properties of the lattice of all subspaces of a linear space (of
dimension>_-3) introduced later but not needed here are irreducibility
4, p. 453 and length>__4.

A set LA is said to be a point-closed subsystem of A if (a)
0eL; (b) for a, beL, abeL (write ab-ab); (c) for a, beL,
1.u.b. {a, b} exists with respect to the elements of L (write 1.u.b.
{a, b}--a/b); (d) for aeL and p>-0, pUaeL. In the remainder of
this section L is to be a point-closed subsystem of A. Then all the
elements of A of finite dimension are in L.

Theorem 1. The system (L, /, .) is a point-modular point-
complemented lattice.

Proof. It is immediate that the system is a lattice. For the
point-modularity let b, c, p e L with O-4p<___c. Then

(p/ b)c-- (p U b) c=p (b c)--p+ bc

whence (b, c)Me. The point-complementation follows from the com-
plementation and atomicity of A.

For a e A define F(a)-- {x e L: x <___ a, dim x< }. Then for a e A,
a--UF(a). (This is essentially a theorem of Orrin Frink, Jr. 4,
Theorem 8.) Thus A--{F(a): a eA}. It is in this sense that A
is considered to be generated by L. To free the discussion from
elements of A--L it is noted that F(a) is an ideal in L that con-
tains only elements of finite dimension, and conversely, it is proved
in the next theorem that such an ideal is a set of the type F(a).
These ideals are used when imbedding, as a point-closed subsystem,
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an abstractly described lattice L into a lattice of the type
Theorem 2. If A is an ideal in L that contains only ele-

ments of finite dimension then A=F(a) for some a e 4.
Proof. Define a- U A. Certainly, AF(a). Let y e F(a). Then

y-_< U A. Since dim y< , there exists finite B A such that y =< UB
by virtue of (1). Hence y e A and F(a)A.

4. The general representation theory. The lattice L is now
described abstractly using properties of the last section and is shown
to be containecl (isomorphically) as a point-closed subsystem in a lat-
tice of the type 4. Throughout this section (L, /, .) is a point-
modular point-complemented lattice with zero 0.

For ae L define P(a)--{pe L: p>-0, pa}. Then for ae L, a-
P(a) because ab for any other upper bound b of P(a) implies

existence of p>-0 such that p; b and p_<_a, a contradiction. (This
is a generalization of the previously mentioned theorem of Frink.)
In light of the results and comments of Section 2 it is meaningful
to use the notion of the dimension of an element.

For TL define [T to be the smallest ideal containing T. Also
define I={ae L: dim a< } and -{0}. Then I={pe L: p>-0}. De-
fine to be the set of all ideals of L that are subsets of I and
q-{_P(a)" a e L}. For a, e _L define a/ to mean a/,
[aV, a/=aA/. It is immediate that (, U, ) is a complete
lattice with zero and unit I; for ae,a-_{pea:p0}; and
3A.

Lemma 2. The laStice _l: is complemented, modular, atomic,
and satisfies (1).

Proof. For the complementation let a e L. An application of
Zorn’s Lemma yields / e L such that a = and ’> implies
a/’. To show a=I let p>-0. Also let pe/; otherwise,
pe aV/. Now /<Z@ [P(p). Thus a(Z P(p))=, whence
there exists y e a such that y CO, y<___b+p for some b e . Suppose
y+bb/p. Then b=y/b since b-<b/p, whence y<___b. Thus ye
a/ contrary to y 0. Hence y+ b= b+p >-_ p and p e [aV. Thus
z [avZ]-aU Z.

The proof of the modularity is similar to that for the lattice
of all ideals in a modular lattice. The point-moclularity is sufficient
in the place of modularity since the ideals considered here contain
only elements of finite dimension.

The atomicity follows from the point-complementation.
Finally, for (1) let e A? for 3" e fl and be a point in A? such

that 7-<_U.. Define /-{xeL: xe U for some finite
Obviously, Ua. The set / is an ideal containing a for every
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j e ft. Thus U/and/9= Us. Let 7- P(p) for some p)>0.
Then p e/, whence p e U: for some finite Jfl, i.e., _<_ kJ.
This completes the proof of the lemma.

Lemma 3. The se$ is a point-closed subsystem of . and
L is isomorphic o under a---_P(a)_.

Proof. The first part is immediate. For the remainder let
a, b eL. If a.b then P(a)P(b), whence P(a)P(b). Con-
versely, let P(a)<__P(b). Also let peP(a); otherwise, if P(a)
is empty, a-O<__b. Now pe P(a), whence pe P(b). This im-
plies p<__b; thus peP(b). Hence P(a)P(b). Now a--,P(a)<__. P(b)-b. Thus the mapping is an isomorphism.

These results are summarized in the following theorem which
is similar to an imbedding theorem of Frink 4, Theorem 14 in
that both extension lattices are of the same type. However, he
imbeds a complemented modular lattice (not necessarily atomic) while
here the imbedded lattice is point-modular and point-complemented
(necessarily atomic but not necessarily complemented and modular).

Theorem 3. The laice L is isomorphic o a point-closed
subsystem of a laice of he ype 4 of Section 3; 4 is unique up
o isomorphism.

If the lattice y/ of Section 3 is in addition irreducible and of
length>_4 then every point-closed subsystem is. Conversely, if the
lattice L of the present section is irreducible and of length_>_4 then
its extension .Z is. Reinhold Baer 1 shows that such a 4 is
isomorphic to the lattice of all subspaces of a linear space, the lat-
ter being unique up to isomorphism. These comments and Theorem
3 yield the following representation theorem.

Theorem 4. If L is a point-modular point-complemented irre-
ducible lattice of length>_=4 then L is isomorphic to a point-closed
subsystem of the lattice of all subspaces of some linear space, the
latter being unique up to isomorphism.

A decomposition into irreducible lattices is now given. Com-
ments similar to those preceding Theorem 3 can be made about the
comparison of these results with Theorem 15 of Frink [4. (See
[4, p. 466 for the meaning of subdirect union.) The second part
of Theorem 5 is a generalization of a part of Theorem 2 of J. E.
McLaughlin [6. Finally, Theorems 4 and 5 give a generalization
beyond that of McLaughlin _6 of the classical representation theory
for complete complemented modular atomic lattices satisfying (1).

Theorem . If L is a point-modular point-complemented lat-
tice then L is isomorphic to a subdirect union of a family of point-
modular point-complemented irreducible laices. Moreover, L is
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isomorphic to the direct union and each member of the family is
complete if L is complete.

Proof. Let be isomorphic to e, the direct union of
irreducible lattices of the type A of Section 3 [4, pp. 453-456.
For ie define g=[2 and 3={/(:e3}. Then 3 is a
point-closed subsystem of A?, whence each is point-modular,
point-complemented and irreducible. Define T, a mapping of into
es, as follows: for ae , a=(/a: i e ). T is easily seen
to be an isomorphism between and a sublattice of e53. Since
L and are isomorphic, the proof of the first part is complete.

Let L be complete. Then 3 is complete; hence each is. To
show that T is onto let ve and define = [2esve_L. Then

= U{ e _L: -<__<v for some i e } e . The proof of v=/
follows that of Theorem 2 of McLaughlin [6. This completes the
proof.

5. Family ot finite dimensional subspaces. The family of
finite dimensional subspaces of a linear space can be readily shown
to be a point-closed subsystem of the lattice of all subspaces. Thus
if the lattice L of Theorem 4 satisfies in addition the descending
chain condition, it follows that L is isomorphic to the particular
point-closed subsystem consisting of the finite dimensional subspaces
of some linear space. Again the latter is unique up to isomorphism.

6. Linear systems. The linear systems of G. W. Mackey 5
can be considered over arbitrary division rings, not necessarily the
real field. The theory is essentially the same and includes the fol-
lowing relevant properties: if S and T are closed subspaces of a
linear system and x an element of the linear space then SA T and
the subspace spanned by S/{x} are closed; the zero dimensional
subspace of a linear system is closed if and only if the linear sys-
tem is regular. Thus the family of closed subspaces of a regular
linear system is a point-closed subsystem of the lattice of all sub-
spaces.

Further, a family of subspaces of a linear space X is the
family of closed subspaces relative to some linear system con-
structed on X if and only if it satisfies the following: (a) for, /e; (b) for Se and xeX, the subspace spanned by
S/{x} is in ; (c) every S eq such that S=/=X is an intersection
of members of which are hyperplanes in the lattice of all sub-
spaces. (A hyperplane in the lattice of all subspaces of a linear
space is a subspace with deficiency one.) Finally, two regular
linear systems are isomorphic if and only if their lattices of closed
subspaces are isomorphic.
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These properties and Theorem 4 yield the following representa-
tion theorem which is the same as the second part of Theorem 2
of McLaughlin _6; the hypotheses are formally different but easily
seen to be equivalent. However, the objectives leading to the state-
ments of the theorem and the techniques employed in its proofs are
quite different.

Theorem 6. If L is a complete point-modular irreducible
lattice (with zero 0 and unit 1) of length>__4 which satisfies
2 for a e L, , {p e L" p<__a, p>-0}-- 1-[ {h e L: h>=a, h-<l},

then L is isomorphic to the lattice of closed subspaces of a regular
linear system, the latter being unique up to isomorphism.

Proof. It is a consequence of (2) that for
a e L, {p e L: p<=a, p>-0}-a= l-[ {h e L: h>_a, h-41}.

This is equivalent to the combined conditions that L is point-
complemented and for a e L with a=/:l, a is the g.l.b, of some set
of hyperplanes of L. It now follows that L is isomorphic to a
point-closed subsystem q of the lattice of all subspaces of some linear
space X; this 3 is the family of closed subspaces of some linear
system constructed on X; this linear system is regular.
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