46. On the Completeness of the Leibnizian Modal System with a Restriction

By Setsuo SAITO

Shibaura Institute of Technology, Tokyo

(Comm. by Zyoiti SUETUNA, M.J.A., March 12, 1966)

§1. Introduction. The purpose of this paper is to show the completeness of a modal system which will be called L_0 in the following.

In my previous paper [1], in order to show an example of defence of circular definition, the following definition was given:

A statement is *analytic* if and only if it is *consistent* with every statement that expresses what is *possible*.

This definition, roughly speaking, is materially equivalent to Carnap's definition of L-truth which is suggested by Leibniz' conception that a necessary truth must hold in all possible worlds (cf. Carnap [2], p. 10).

If "analytic" is replaced by "necessary" in the above definition, this definition becomes as follows:

A statement is *necessary* if and only if it is *consistent* with every statement that expresses what is *possible*.

This reformed definition is symbolized by modal signs as follows: $\Box p \equiv (q) [\Diamond q \supset \Diamond (p \cdot q)],$

where p and q are propositional variables.

Let us replace it by the following axiom-schema and rule:

Axiom-schema. $\Box \alpha \supset [\Diamond \beta \supset \Diamond (\alpha \cdot \beta)]$, where α, β are arbitrary formulas.

Rule of inference. If $\vdash \Diamond p \supset \Diamond (\alpha \cdot p)$, then $\vdash \Box \alpha$, where α is an arbitrary formula and p is a propositional variable not contained in α .

We call L (the Leibnizian modal system) the system obtained from the usual propositional calculus by adding the above axiom schema and rule and the rule of replacement of material equivalents. ($\Diamond \alpha$ is regarded as the abbreviation of $\sim \Box \sim \alpha$).

This system is easily proved to be equipollent to the system obtained from the usual propositional calculus by adding the following axiom-schema and rule and the rule of replacement:

Axiom-schema. $\Box(\alpha \supset \beta) \supset (\Box \alpha \supset \Box \beta)$.

Rule. If α is a tautology, then $\vdash \Box \alpha$.

We call L_0 the latter system with the restriction that if $\Box \alpha$ is a formula of L_0 then α does not contain \Box . We shall discuss the completeness of L_0 in the following sections.

§ 2. Main results. We write α , β , γ , \cdots for the formulas of L_0

which do not contain \Box . We write $\alpha', \beta', \gamma', \cdots$ for general formulas of L_0 . $(\alpha', \beta', \cdots$ are composed of propositional variables and $\Box \alpha$, $\Box \beta, \cdots$ with $\sim, \cdot, \lor, \supset$.)

Let γ be an arbitrary formula not containing \Box . We call a γ -valuation a manner of value assignments which satisfies the following condition:

truth value of $\Box \alpha = \begin{cases} \text{true, if } \gamma \supset \alpha \text{ is a tautology;} \\ \text{false, otherwise,} \end{cases}$

where α is an arbitrary formula not containing \Box , and γ is called the *axiom*.

For a general formula, the following definition is given:

 α' is a γ -tautology, if and only if, for a fixed axiom γ , α' is true for all γ -valuation. (α , which does not contain \Box , is a γ -tautology if and only if α is a tautology.)

We now state the following theorems:

Theorem 1. If α' is provable in L_0 , then α' is a γ -tautology for all γ .

Theorem 2. If α' is a γ -tautology for all γ , then α' is provable in L_0 .

§ 3. Proof of Theorem 1. If $\gamma \supset (\alpha \supset \beta)$ is a tautology and $\gamma \supset \alpha$ is a tautology, then $\gamma \supset \beta$ is a tautology. Therefore $\Box(\alpha \supset \beta) \supset (\Box \alpha \supset \Box \beta)$ is a γ -tautology. If α is a tautology, then $\gamma \supset \alpha$ is true for an arbitrary γ -valuation. Therefore, if α is a tautology, then $\Box \alpha$ is a γ -tautology.

§4. Proof of Theorem 2. Let us mention the following lemmata for the sake of the proof of Theorem 2:

Lemma 1. If $\alpha' \cdot \beta'$ is γ -tautology, then α' , β' are γ -tautologies. The proof is evident.

Lemma 2. If δ does not contain \Box and

(I) $\sim \Box \alpha_1 \lor \sim \Box \alpha_2 \lor \cdots \lor \sim \Box \alpha_m \lor \Box \beta_1 \lor \Box \beta_2 \lor \cdots \lor \Box \beta_n \lor \delta$ is a γ -tautology, then

(II) $\sim \Box \alpha_1 \lor \sim \Box \alpha_2 \lor \cdots \lor \sim \Box \alpha_m \lor \Box \beta_1 \lor \Box \beta_2 \lor \cdots \lor \Box \beta_n$ is a γ -tautology or δ is a tautology.

Proof. If δ is not a tautology, then there exists a γ -valuation by which δ is false. For such a γ -valuation, (II) is true. Therefore, (II) is a γ -tautology, because truth value of (II) depends only on $\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_n, \gamma$ and is independent of γ -valuation, q.e.d.

An arbitrary fomula α' is reduced to a conjunction of the formulas of the form (I). If δ in (I) is a tautology then (I) is provable in L_0 . From Lemma 1 and Lemma 2, therefore, for the proof of Theorem 2, it is sufficient to consider (II) as α' . Now take $\alpha_1 \cdot \alpha_2 \cdot \cdots \cdot \alpha_m$ as axiom γ (if m=0 then it means a tautology). Then, since

 $\Box \alpha_1, \Box \alpha_2, \cdots, \Box \alpha_m$

are true,

S. SAITO

```
[Vol. 42,
```

 $\Box \beta_1 \lor \Box \beta_2 \lor \cdots \lor \Box \beta_n$ is true. Therefore for some $i (1 \le i \le n) \Box \beta_i$ is true, that is $(\alpha_1 \cdot \alpha_2 \cdot \cdots \cdot \alpha_m) \supset \beta_i$ is a tautology, accordingly so is $\alpha_1 \supset (\alpha_2 \supset (\cdots (\alpha_m \supset \beta_i) \cdots)).$

Therefore,

$$\Box \alpha_1 \supset (\Box \alpha_2 \supset (\cdots (\Box \alpha_m \supset \Box \beta_i) \cdots))$$

is provable in L_0 , and

 $\sim \Box \alpha_1 \lor \sim \Box \alpha_2 \lor \cdots \lor \sim \Box \alpha_n \lor \Box \beta_1 \lor \Box \beta_2 \lor \cdots \lor \Box \beta_n$ is provable in L_0 .

I express my hearty thanks to Prof. S. Maehara who gave me significant advices which enabled me to improve my original manuscript. This work was supported by the Grant-in-Aid from the Ministry of Education.

References

- [1] S. Saito: Circular definitions and analyticity. Inquiry (Oslo), 5, 158-162 (1962).
- [2] R. Carnap: Meaning and Necessity. University of Chicago Press, Chicago (1947).