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87. A Construction of Branching Markov Processes

By Nobuyuki IKEDA, Masao NAGASAWA, and Shinzo WATANABE
Osaka University, Tokyo Institute of Technology, and Kyoto University
(Comm. by Kinjiré6 KUNUGI, M.J.A., April 12, 1966)

In order to construct a branching Markov process" we are able
to take, roughly speaking, two ways: One is so-called a probabilistic
way, that it is obtained by piecing out a given Markov process
which we call the non-branching part by means of a given branching
system, and the other is so-called an analytic way, that solving a
fundamental equation determined by a given Markov process and a
branching system," it is obtained by constructing a semi-group on C(S)
from the obtained solution. This paper is devoted to the construction
of branching Markov process in a probabilistic way. The analytic
construction will be given in a forthcoming paper.

1. Direct product of Markov processes. Let S be a compact
Hausdorff space with a countable base and 4 be an extra point. Let
{W, z, B, 6., P,, &€ S} be a right continuous strong Markov process
on SU{4} with 4 as a death point.? We set {(w)=int {¢; x,(w)=4}
(=+ oo if such ¢t does not exist), then it is clear that xz,(w)e S if
te [0, {(w)) and x,(w)=4 if te [{(w), + ). We assume that

P[{=t]=0, for t=0 and xze S.

Let W™ be the n-fold product of W. The element of W™ is

denoted as w’'=(w', w? --., w") where wie W,j=1,2, ---, n, and put

(1.1) ri(w)=@(w"), B(W?), - -, L W")),
and
(L.2) Zw')= min {C(w).
Now, we define )

= ooon JYLww’)], i E<C(w’),”
3) B w)={ [
and
(1.4 fw'=0.w', W, ---, 0w").

Then it is easy to see that %, (w’) is a random variable defined

1) In this paper we adopt the terminology and the notation used in [2], [3],
and [4]. For the definition of branching Markov processes we refer to [2]. For
the definition of fundamental equations of branching Markov processes we refer
to [31].

2) i.e. i) W contains w4 such as x:(w4)=4 for every t=0 and ii) for everywe W,
xi(w)=4 implies xs(w)=4 for all s=t. When it is necessary to introduce P, we
take any probability measure Py on (W, $w) scuh that Psla(w)=4]=1.

3) 7 is the natural mapping from S to S=, ef. [2].
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on(Wm, Bm= ® B..)" taking values in S"U {4} such that (i) Z,(w')=4
implies %,(w')= A for all s=¢ and (ii) Z,(0,w")=%,,,(w’'). Let
(1.5) Tw = B{x (w'); Vs St} B™
be the smallest o-field with respect to which Z,(w') is measurable for
any s=t.

Now, if we define P, ,,,....s,), (€;€S,5=1,2, --+,n) by
(1.6) Py epeo)[A]=P, X P, x -+ x P, [A],” for AeJIY
then we have

Lemma 1.1. For any Ae Jv,

P(xlyzz. ,xn)[A] P(”xlyﬂ'xzy mn)[A]’

where (Txy, TXy, +++, TX,) May be any permutation of (X, Ly, »++, T,).

Therefore for any xeS",
(107) PxI:A] ZP(wl,avzwwxn)[A:lr Ae ﬁg)
is well-defined, where (x,, @,, + -+, 2,) € x.

Definition 1.1. The above defined system {W™, z,(w"), J\», T,
6., P,, xe 8"} is said to be the n-fold symmetric direct product® of
the given Markov process {W, «,, $,,¢, 6., P,, x€ S}.

Theorem 1.1. The n-fold symmetric direct product {W™, Z,,

N T, 0, P, xe S of a given right contimuous strong Markov

process {W, x,, B,,C, P,,xe S} is a right continuous strong Markov
process. If x,(w) has the left limit, then T (w') also has the left limit.

Our proof of Theorem 1.1 is based on Fubini’s theorem and the
following

Lemma 1.2. (i) Let Ae Jl", and A; be the j-section of A, i.e.,
fixing w', w?, oo, WL W eee W we put A;={wi; (w', -+, w") € A},
Then Aj;e B,

(ii) Let T(w') be JI»-Markov time. Then the j-section T (w)
of T(w') which is defined, for fixed w', -+, wi™, wi*' «.. w" by
Ti(w?)=T(w")

18 a B~Markov time.

(iii) Let T be an JI"-Markov time and Aec Jly. Then

Aj € .@Tj,

where A; and T are the j-section of A and T, respectively.

Proposition 1.1. If{W,x, B, , P,, xS} is quasi-left contin-
uous before C, then the symmetric direct product is also quasi-left
continuous before C.

Proposition 1.2. If {W,x, B, (, P,,xcS} satisfies Hunt’'s
hypothesis (A)" and if { is non-accessible,® then the symmetric direct

4) ® Pe is the n-fold product of Beo.

5) Px X PgygX +++ X Py, is the product measure of P,,---, and Py,.

6) The n-fold dlrect product of different kinds of processes is similarly defined
and the following results are valid for both.

7) Cf. Hunt [1].

8) i.e. totally inaccessible in the strong sense in the sense of Meyer [5].
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product satisfies also the hypothesis (A).

2. To construct a non-branching part on S from a givern
Markov process.

Given a right continuous strong Markov process {W, x,, B, ¢, 0.,
P,xecS} on SU{4} with 4 a death point, let X" ={W™, z, I, T,
6,, P,, xcS" be its n-fold symmetric direct product. Then a non-
branching part on S is defined as, roughly speaking, the infinite direct
sum of X,

To be precise, take another extra point 0 and an element w, and put

2.1) S°={0}, WO ={w,},
(2.2) W=t W,
n=0
o [m), i m=w'e W, n=1,2, .-,
(2.3) xt(w)—{a L if =w,e WO,
SN Z(w’)’ if w=w"e W(n), /n:]_’ 2, cee
@.4) O A
— W, lf =w' e W('”’)y n:l’z’ cee
(2.5) ﬁtw—{u)a , if W=wye WO,

and
(2.6) Jl,, (0=t=<-+ ) is the o-field on W generated by JI\”,
n=1,2, -+, and {w,}.
Obviously, we have T,y m =J1{" and Z,(0)=4 (resp. 0) implies
Z,(w)=4 (resp. 0) for every s>t Now we shall define a system of
probability measures P,, x € S= U S"U {4}, on (W, Jl..) by

PJA|=P[ANW™], 1f xe S,
sza[A]=53<A>, o
(PA is any probability measure on (W, Jl.) such that
P,[Z(w)=4]=1.
Definition 2.1. Let X be the symmetric direct product on S*
of a given Markov process on S. Then the above defined system X=
(W, =, 9, C, 0,, P, xc S}is said to be the (infinite) direct sum of X ™,
Theorem 2.1. The above defined infinite direct sum is a right
continuous strong Markov process on S, and if x,(w) has the left
limat, then T, (w) has the left limit, if x,(w) ts quasi-left continuous,
then Z,(w) 1s also quasi-left continuous, and if x(w) satisfies the
Hunt’s hypothesis (A) and { is non-accessible, then %,(0) satisfies
the hypothesis (A).
The direct sum X={W, &,, 71,, Z, 0, P, x € S} of the direct products
is suited for a non-branching part of a branching Markov process.
3. To construct an instantaneous distribution from a given
branching system. Given a branching system {¢.(®), 7. (x, dy), n=
0,2,8, -+, +oo} (cf. [3]), let X={W, %, J,,C,0, P, xcS} be the

(2.7)
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direct sum of the symmetric direct products of a given Markov
process defined in the previous section. We assume that { satisfies
Px[ﬂxg_ S S] =1.
We define n(x, dx) by
(e, dx) =31 q,(@)T,(x, dx),
n=0
7(0, dx)=0,(dx),
(4, dx)=0,(dx),
where >1* denotes the sum over n=0,1,2, .-+, + o,
n=0
Next we put, if Z(@)>0 and we W™,

(3.2) Y, dx;, dxs,y « -, dx”):kzﬂ Xigtw =¢wk) <cop(W)T(D g (W), doxy)

XJL];c 5(x$v(1;)(wj))(dxj)7

(3.1)

and if Z(w)=0,
(3.3) Y, dx)=0,(dx).
Let v be the mapping from SxXSx .-+ xS to S, (ef. [2]), and define
3.49) #(ﬁ)! dx):#'(wy 7—1(dx))y if we W(n)y n=1,2 ...,
' Aa(wby dx):3b(dx)y
then, we have

Proposition 3.1. The above defined kermel p(w,dx) on Wx S
is an instantaneous distribution.”

4. To construct a branching Markov process from a given
Markov process and a given branching system. Let Z, be the
Markov process defined in §2 and p(w,dx) be the instantaneous
distribution defined in §3. For %, and p, we can apply Theorem 1.1
of [4]. To be precise, the state space S in Theorem 1.1 of [4] is
now G S» and S is S= G S*U{4}. Thus we obtain the following

'In‘t:eorem 4.1, Letn{ %/V, x,, B, C, P, xc S} be a right continuous
strong Markov process on SU{4} with 4 a death point such that
(4.1) P,[{=t]=0, Jor xS and t = 0,

(4.2) P,[3x;_ e S]=1, for xeS.

And let {q.(x), 7.(x, dy); n=0,2,8, .-+, + o} be a branching system
1.6.

(@) q.(x) s a mnon-negative Borel measurable function on S
satisfying

i* g.(x)=1, for any xe S.
n=0

() w.(x, dy) is a Borel measurable function of x€ S for fixed dy
and a probability measure on (S™, B(S™)) for fixed xeS, where
B(S™) is the topological Borel field of S™.

Let us define n(x, dy) by (3.1).

9) The definition of an instantaneous distribution is found in [4].
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Then, there exists a unique (up to equivalence) right continuous
strong Markov process X={2, X,, 3,,¢, 0,, P,, xe S} such that
RS

(4.3) T,f(x)=(T.f) |s(x), fe B*(S),™ Jor xe 8§,
(4.9) fZ’m[f(Xt); t<t]=Tif(@)=E,[f(x,); t <], for x €S,
(4.5) PlX.edy| X, ]=n(X._, dy), a.s. on {t<}, for xeS,
(4.6) P[X. =4,7.<co]=P,[r.<co],™

1.e. X, 18 a branching Markov process with the fundamental system
{T?, 7} satisfying the condition (c. 2) in [2]. Moreover, if x, has
the left limit, X, has also the left limit at t<t., and if x, s
quasi-left continuous and { is non-accessible, then X, is quasi-left
continuous before T..

The statements of the Theorem are verified, if we notice the
way how the process X, has been constructed and use the Theorem

1 of [2].
Remark. Under an additional condition
(4.7 sup P,[{<e]=a<1, or
€S
(4.8) inf P,[{>¢]>d, for some ¢>0 and ¢>0,
€S

X, is left continuous at 7., when 7.,<oo,
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10) T:f(x)=E:[f(X)]. For the definition of B*(S)and f we refer to [2], [3].
11) 7, 7n, and 7. are defined in the same way as in [2] and [4].



