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87. A Construction of Branching Markov Processes

By Nobuyki IKEDA, Masao :NAGASAWA, and Shinzo WATANABE
Osaka University, Tokyo Institute of Technology, and Kyoto University

(Comm. by Kinjir5 KUNUGI, M..A., April 12, 1966)

In order to construct a branching Markov process) we are able
to take, roughly speaking, two ways" One is so-called a probabilistic
way, that it is obtained by piecing out a given Markov process
which we call the non-branching part by means of a given branching
system, and the other is so-called an analytic way, that solving a
fundamental equation determined by a given Markov process and a
branching system,) it is obtained by constructing a semi-group on C(S)
irom the obtained solution. This paper is devoted to the construction
of branching Markov process in a probabilistic way. The analytic
construction will be given in a forthcoming paper.

1. Direct product of Markov processes. Let S be a compact
Hausdorff space with a countable base and z/ be an extra point. Let
{ W, x, _, , P, x e S} be a right continuous strong Markov process
on S l; {/} with z/ as a death point.) We set (w)-int {t; x(w)-z/}
(-/ if such does not exist), then it is clear that x(w)e S if
t e 0, (w)) and x(w)-t if t e _(w), / ). We assume that

P[-t-O, for t_>_0 and x e S.
Let W() be the n-fold product of W. The element of W() is

w ., w) where w e W, j-1, 2, ..., n, and putdenoted asw’ (w, ,..
(1.1) x’(w’)-(x(w), x(w), ..., x(w)),
and
(1.2) (w’)- min {(w)}.

Now, we define

(1 a) t(w’)- if t (w’) 3)

tz/ if t (w’),
and
(1.4) Ow’-(Ow, Ow, ..., Ow’).

Then it is easy to see that Z(w’) is a random variable defined

1) In this paper we adopt the terminology and the notation used in [2., 3,
and E4]. For the definition of branching Markov processes we refer to E2]. For
the definition of fundamental equations of branching Markov processes we refer
to

2) i.e. i) W contains wz such as xt(wz)=zl for every t_>_0 and ii) for everyw W,
xt(w)=/ implies xs(w)=A for all s>=t. When it is necessary to introduce Pz, we
take any probability measure Pz on (W,..) scuh that Pz[xo(W)=Z1=l.

3) . is the natural mapping from S() to S, cf. 2.



No. 4 Construction of Branching Markov Processes 381

on (W,_-( .)* taking values in SU {/} such that (i) 5,(w’)-z/
i----1

implies 5(w’)--/ for all st and (ii) ,(w’)-,+(w’). Let
(1.5) ,()-.{,(w’); vs < t}c.()=
be the smallest a-field with respect to which 5,(w’) is measurable for
any s<__t.

Now, if we define P,,,...,,,), (xe S, j=l, 2,..., n) by
(1.6) P(,,,. ,)A-P, P,. P,EA, for Ae (2
then we have

Lemma 1.1. For any A e (2,
where (xl, =x, ..., 7:x,) may be any permutation of (xl, x., ..., x,).

Therefore for any x e S,
(1.7) P[A]-P(,,...,,)[A], A e 372
is well-defined, where (x, x., ..., x,) x.

Definition 1.1. The above defined system {W("), ,(w’), 3l"), ,
0,, P,, x S"} is said to be the n-fod symmetric direct product) of
the given Markov process { W, x,, ., , 0, P, x S}.

Theorem 1.1. The n-fold symmetric direct product { W(), ,
7() , 0, P xS} of a given right continuous strong Markov
process W, xt, , , P,, x S} is a right continuous strong Markov
process. If x(w) has the left imit, then ,(w’) aso has the left limit.

Our proof of Theorem 1.1 is based on Fubini’s theorem and the
following

() and A be the j-section of A, i.e.Lemma 1.2. (i) Let A e
w wj+l ...,w,weputAj {w;(wl, ..,w)eA}.fixing w, w-,

Then A e .
(ii) Let T(w’) be )-Markov time. Then the j-section T(w)

of T(w’) which is defined, for fixed w, w-, w’+, w, by
T(w) T(w’)

is a -Markov time.
()-Markov time and A e Then(iii) Let T be an

A e,
where A and T are the j-section of A and T, respectively.

Proposition 1.1. If { W, x, , , P, x e S} is quasi-left contin-
uous before , then the symmetric direct product is also quasi-left
continuous before .

Proposition 1.2. If W, x,, ., , P, x e S} satisfies Hunt’s
hypothesis (A) and if is non-accessible,s) then the symmetric direct

4) 2 is the n-fold product of .
5) PlP... P is the product measure of P, ..-, and Pn.
6) The n-fold direct product of different kinds of processes is similarly defined

and the following results are valid for both.
7) Cf. Hunt 1.
8) i.e. totally inaccessible in the strong sense in the sense of Meyer 5.
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product satisfies also the hypothesis (A).
2. To construct a non.branching part on S trom a

Markov process.
Given a right continuous strong Markov process { W, x, , , ,

P x e S} on S t2 {/} with z/ a death point, let X()-{W
0, P, x e S} be its n-fold symmetric direct product. Then a non-
branching part on S is defined as, roughly speaking, the infinite direct
sum of X().

To be precise, take another extra point and an element w and put
(2.1) SO- {(}, W()- {w},

(2.2) W= [J W(),

t())__t(W’),[ if -w’ W(), n-l, 2,...,(2.3) if --we W(),

(w), if -w’e W), n-l, 2,...,(2.4) ()----/ if --w W(),

Ot_O,w’, if -w’ e W(), n-= 1, 2, .,
w if -w W(),(2.5)

and
(2.6) 3It, (O<___t<= + ) is the a-field on W generated by

n-l, 2,..., and {w}.
() and ()-/ (resp. ) impliesObviously, we have Tt() t

z()-z/ (resp. ) for every s>=t. Now we shall define a system of

probability measures P, x S-- [J S[2 {/}, on W, 37) by
0

(PA PA W(), if x e S ,
(2.7) JP_-[A (A),

Pz is any probability measure on (W, ?) such that
P0(v)-- -.Definition 2.1. Let X() be the symmetric direct product on S

of a given Markov process on S. Then the above defined system X--
{ W, , t, , 0t, P, x e S} is said to be the (infinite) direct sum ofX().

Theorem 2.1. The above defined infinite direct sum is a right
continuous strong Markov process on S, and if xt(w) has the left
limit, then t() has the left limit, if xt(w) is quasi-left continuous,
then 5t() is also quasi-left continuous, and if xt(w) satisfies the
Hunt’s hypothesis (A) and is non-accessible, then () satisfies
the hypothesis (A).

The direct sum X=- { W, xt, t, , Ot, P, x S} of the direct products
is suited for a non-branching part of a branching Markov process.

:. To construct an instantaneous distribution trom a iven
branchin system. Given a branching system {q.(x), 7(x, dy), n-
0,2,3,...,/} (cf. [3), let X-{W, St,,,0,P,xeS} be the
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direct sum of the symmetric direct products of a given Markov
process defined in the previous section. We assume that satisfies

P[x;_ S 1.
We define 7(x, dx) by

(x, dx)=o* q(x)(x, dx),
(3.1) )(3, dx)=(gx),

[(2, dx)=(gx),
where ,* denotes the sum over n--0, 1, 2,..., + .

Next we put, if ()>0 and e W(),

(3.2) f’(, dxl, dx2, ..., dx)--?,k=l Z(Z’=(wk)<()7(x(wl-(wk)’ gxk)

t[()((dx),
and if ()-0,
(3.) ’(, dx)- (gx).
Let 7 be the mapping from S S... S to S, (cf. [2), and define

(3.4) /(, dx)-/’(, 7-(dx)), if e W(), n-l, 2, ...,
(w, dx)- (dx),

then, we have
Poposition :.1. The above defined kernel lt(, dx) on W S

is an instantaneous distribution.)

4. To construct a branching Markov process trom a iven
Markov process and a given branching system. Let 5 be the
Markov process defined in 2 and /(, dx) be the instantaneous
distribution defined in 3. For Zt and /, we can apply Theorem 1.1
of [4. To be precise, the state space S in Theorem 1.1 of 4 is

now J S and S is S= U S){A}. Thus we obtain the following
0

Theorem 4.1. Le { W, xt, -t, , P, x e S} be a right continuous
strong Markov process on S U {3} with a death point such that
(4.1) P--t--O, for x S and t >= O,
(4.2) P_x_ S- 1, for x e S.
And le {q(x), z(x, dg); n-0, 2, 3, ..., / } be a branching system
i.e.
(a) q(x) is a non-negative Borel measurable function on S
satisfying

* q(x)-l, for any x e S.
0

(b) (x, dy) is a Borel measurable function of x S for fixed dy
and a probability measure on (S, (S)) for fixed x e S, where
:(S) is the topological Borel field of S.

Let us define (x, dy) by (3.1).

9) The definition of an instantaneous distribution is found in [4.
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Then, there exists a unique (up to equivalence) right continuous
strong Markov process X={tg, Xt, t, , Or, P, x e S} such that

(4.3) TrY(x)- (Ttf) Is(x), fe B*(S),I) for x e S,
(4.4) Ef(Xt); t <r-- Ttf(x)=--Ef(x,); t<, for x e S,
(4.5) PX e dy X_ -7(X_, dy), a.s. on { }, for x e S,
(4.6) PEX:=zl,<-PE:<
i.e. Xt is a branching Markov process with the fundamental system
{ T:, } satisfying the condition (c. 2) in 2. Moreover, if xt has
the left limit, Xt has also the left limit at tvoo, and if xt is
quasi-left continuous and is non-accessible, then Xt is quasi-left
continuous before

The statements of the Theorem are verified, if we notice the
way how the process X, has been constructed and use the Theorem
1 of

Remark. Under an additional condition
(4.7) sup P<03-a<l, or

(4.8) inf P>e>, for some >0 and 6>0,
x6.S

X is left continuous at , when
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10) T,f(x)=,xEf(Xt). For the definition of *(S) andjwe refer to
11) r, rn, and too are defined in the same way as in [2 and 4.


