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85. A Construction of Markov Processes
by Piecing Out

By Nobuyuki IKEDA, Masao NAGASAWA, and Shinzo WATANABE
Osaka University, Tokyo Institute of Technology, and Kyoto University

(Comm. by Kinjir6 KUNUC,T, M.J.A., April 12, 1966)

In studies of Markov processes we sometimes encounter the
situations where we must piece out given Markov processes by an
appropriate procedure. Examples are construction of a branching
Markov process from a given Markov process which we call the
non-branching part and a branching system (cf. 5, 6), construction
of a conservative Markov process from a given process of finite
life time (cf. 11), etc. In this paper we shall discuss such
a procedure.

1. 7otation and the main theorem. Let S be a locally
compact Hausdorff space with countable base and S-Su {z/} be the
one-point compactification of S (if S is compact z/ is attached as an
isolated point).

At first we state the following preliminary
Lemma 1.1. Let {W,., P, x e S} be a system of probability

measures on a a-field of W and let [(w, dy) be a probability kernel
on WS. Let 9- WS, =_@(R).@(S), and -[[ 9, (9-9, j-l,

2,...) with the product a-field :-(R), (-), and put

Q(gco)- P[dw][(w, dy),
where we denote co-(w, y). Then, there exists a unique probability
measure P,(z e S) on (/2, ) satisfying
(1.1) P,[dcl, dc, """, dc]-Q,(dcl)Ql(dc) Q,-l(dc
where co-(w, z).

This lemma is a consequence of Ionescu Tulcea’s Theorem _7],

For a given right continuous strong Markov process {W, x,, ,, 0,, P,, z e S} on S with z/ a death point,) we define:
Definition 1olo A kernel /(w, dy) defined on WS will be

called an instanganeous distribution if it satisfies;
(i) For any fixed w e W,/(w, .) is a probability Borel measure on
S, and for any fixed Borel subset A of S, (., A) is a -measurable
function on W.)

1) i.e. if (w)==# then (w)= for all s>_t. We set (w)=inf {$; (w) =,#}.
2) ={;s_}, 0=<=<oo.
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(ii) For w e W such as 5(w)=0, ,u(w, dy)=(dy).
(iii) For any Markov time T(w),
(1.2) P,u(w, dy)- p(O(,w, dy), T(w) <(w) P_ T(w) <(w).

In the following we assume that we a given a right continuous
strong Markov process { W, x, , 5, , P, x e S} on S with a death
point and an instantaneous distribution p(w, dy). And let 9-W S, 9,
and P be those defined in Lemma 1.1.

Now let w=(w, y)e we put

(1 3) (w)- x(w), if t <(w),
ty, if t 5(w),

and put for -(w, w,...)e ,
(1.4) N()-min{]; 5(w)-0}, (-+, if such j does not exist).

We define next X() on 9 by
if 0 t (w),

_(w)(w),. if (w)< t (w)+. (w),
(1.5) Xt(&)-jxt_(;(,)+...+(,))(w,+), if (w)<t =,(w),

)

if t 5(w),
and denote

(.) :()-o, :()-()-(w), ..., .()- (),. o.,
()

(.) ()- (w).
Lemma 1.2. Let -{5; X() is right continuous with respect

to t 0}. Then,
={5; x.-xo(w,), for any }, aud

Therefore, we can restrict every quantities defined on to o.
The shift operator of 5 is defined as

(.9) 5-((_(,)w,+,x,+) ...) if :,()<t<+(5)
whre 5-(, , and -(w, x), -, 2, ....

k

Let be the projection from o to , (-9) and define

2-() , where -2(S),

(.0) -2: , and

-2{X,;s} o.
5, 5’o is said to be R-equivaent and weDefinition 1.2.

denote

if;
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( ) X(():X(’), for any s_<_ t, and
ii ) if v(cD)_<_t <v+(5), then r((’).<__ <v+(’) and r()-v(’)

for any jk.
Now we define new a-field by

(1.11) -{A; i) A e , and ii) if e A and ’(R), then ’, e A}.
It is clear that is a a-field of 90 and.

Remark. (i) v() is a -Markov time but it is not necessarily

-Markov time.
(ii) If we put -V, then -.

$>0

(iii) Put -{A;Ae, and A{v<}e for any t0}, then

-+.
Now our main Theorem is stated as follows.
Theorem 1.1. Let { W, x, , , O, P, x e S} be a right con-

tinuous strong Markov process on S with as a death point and
(w, dy) be an instantaneous distribution. Then, the above defined
system X={0, X, , , , P, x e S) is a right continuous strong

t0-i )Markov process on S, where PX-2,
For the proof, we need several lemmas.
2. Lemmas. We first note that for any -Markov time T()

Galmariono’s test remains valid, i.e.,
Lemma 2.1. For any tO, random time T()O satisfies

{5; < t} e e

if and only if ( T() is -measurable and ii if T() <t (resp.
T() t) and &’(R) then T()- T(&’).

Lemma 2.2. : VO[x().
Making a slight modification, Courrge-Priouret’s results 1 are

valid in our case, i.e.,
Lemma 2.3. Let T(&) be a -Markov time and take any

integer k. Then there exists T(, ’) on 9o o satisfying
1) T(, ’) is @-measurable,
2) for fixed , T(, .) is -Markov time, and
3) T()Vv(&)-v()+ T(, 0(,).

If we notice the way how the measure P and the random
variable X were constructed and the properties of the instantaneous
distribution, we are able to verify the following

Lemma 2.4. For any B e and A e,
(2.1) PO e B, A-PxB; A.

3) If x is merely Markov, then X is also Markov. Of course, X is temporally
homogeneous.

4) cf. [4].
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(ii) Let g(cS, ) be a bounded measurable fncion on
and a() be .-measurable, then for any A
(2.2) Eg(O, a()); A-g(., s) ,=; A.
(iii) Let g(5, ’) be a bounded .:@-measurable function, then

for any A e,
(2.3) Eg(, 0); A-g(u, .) =-; A.

Lemma 2.5. Let T() be a -Markov time, then there exists
a -Markov time T(w) defined on W, such as

T(&)- T(w), on T<},
where -((w, y), , , ...).

Lemma 2.6. Let f(x) and g(x, t) be bounded measurable func-
tions on S and S 0, , then for any -Markov time T(),
(2.4) f(X)g(X:, -T); T<v-f(X)g(X:, v);

Lemma 2.7. Let g(x, t) be a bounded measurable function on
S 0, and T() be any -Markov time, then for any A ,
(2.5) g(X()(), v(6)); A xg(X:, v); A.. Proof of Theorem 1.1. Let f(x) be a bounded measurable
function on S for which we put f()-0, T(&) be a -Markov
time and A e. In order to prove Theorem 1.1, it is sufficient for
us to show
(3.1) f(X+); A-f(X)J; A.
This is verified by means of the above mentioned Lemmas. We shall
sketch the proof.

Put
I-Ef(X+); A(; T()<v(&) T()+t, for some k},

and
II=Ef(X+); A {; v() T(&), T(&)+t <v+(&), for some k}.

If we notice
(a.2) Ef(X+); T, T+ <+, A

EZ(v T)Ef(X(, .)+); 0 T(u, ) < v,

=E(vT)ExEx(, .)f(X); 0t
0 T(u, .) <v =; A

5)--E(v< T<v+)Ef(X); 0<t <v; A,
we have

(3.3) II- Ef(X+);v T, T+t <v+; A
k=0

=EEzf(X); 0t<v; A.
Therefore we have
xf(X);A-II-zf(X); vt; A.

5) z(A) is the indicator of a set A.
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Thus it is sufficient for us to show
(3.4) I-//xf(X); v_<_]; A],
but this is verified as follows:

EEzf(X); v<__t; A
=/[//f(X_,); -s0] [,=; v]; A]

Z EEZ(c T<v+)f(X+_+(O+)); c+- Tt, A]

:I.
4. Some properties of the process . Let (P)be the

completion of with respect to P, and put

then, we have
Theorem 1.1’. Under the same notations of Theorem 1.1,

{90, X, , , , P, x e S} is a right continuous strong Markov process.
(cf. [12], [2]).
Proposition 4.1. If x(w) has the left limit at t e (0, (w)],

P-a.e., then X() has the left limit at t e (0, ()), P-a.e.
Proposition 4.2. If x(w) is quasi-left continuous and (w)

is non-accessible (i.e. totally inaccessible in the strong sense in the
sense of Meyer [10]), then X(&) is quasi-left continuous before
(), i.e., for any sequence of Markov times T. T T,

[limX=X; T<]-[T<].
Corollary. If x(w) is a Hunt process and (w) is non-accessible,

and if P[= ]-1, then X() is a Hunt process.
Proposition 4.. Let the instantaneous distribution p(w, dy)

be a probability measure on S for such w that (w)>0, and x(w)
satisfy either
( ) supP[<]=a<l, or

(ii) $here exist e>0 and >0 such as
inf P[5>e] >.

Then, X, is conservative i.e.,
e

5. Applications. i) Let X(w)satisfy P[x_eS]=l, xeS,
and ’(x, dy) be a probability kernel on S S. Put

p(w, dy)-’(x_(w), dy), and (w, dy)-(dy),
then p(w, dy) is an instantaneous distribution. In particular, if we
take

p’(x, gy)=3(gy),

6) x(w)=A for all $>-0.
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Theorem 1.1 reduces to the case treated in 11.
ii) Let S have a boundary S in some sense, and given a kernel

/’(x, dy) on {S@SS} x S and a Markov process x(w) on S USS with
PFx_ e S U S] 1. Put

,u(w, dy)--p’(x_, dy),
and apply Theorem 1.1, then we have a process so-called with
instantaneous return from the boundary 3S (cf. 8, [3).

iii) Theorem 1.1 is applicable to construction of a branching
Markov process. But since it needs some preparatory consideration,
we will treat it in the forthcoming paper.
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