99. Obstructions to Locally Flat Embeddings of Bounded Combinatorial Manifolds

By Masako Ujihara
Waseda University, Tokyo
(Comm. by Kinjirô Kunugi, m.J.A., May 12, 1966)

In the paper [1], H. Noguchi showed that for any proper ($p+1$)-flat embedding $f: M \rightarrow W$, where M is an oriented closed n-manifold and W is an oriented ($n+2$)-manifold without boundary, the p-homology class Ω_{f} of M, called the Whitehead class of f, is defined, and if $\Omega_{f}=0$, the embedding f can be arbitrarily approximated by a p-flat embedding $g: M \rightarrow W, 0 \leq p \leq n-2$.

We will extend this for bounded manifolds M and W as follows.
Let M be a compact oriented n-manifold with non-vacuous boundary ∂M, and W be an oriented ($n+2$)-manifold with non-vacuous boundary ∂W. Let $f: M \rightarrow W$ be a proper embedding; that is to say, $f(\operatorname{Int} M) \subset$ Int W and $f(\partial M) \subset \partial W$. Then, by $\S 4$ of [1], f is $(n-1)$-flat. Hence it is assumed that f is a ($p+1$)-flat embedding, $0 \leq p \leq n-2$.

Next we define the p-homology class $\Omega_{f} \in H_{p}\left(M, \partial M ; G^{n-p-1}\right)$ of $M \bmod \partial M$, called the Whitehead class of the embedding f, where G^{n-p-1} is the knot cobordism group of dimension $n-p-1$. In fact by Theorem 3 of [2] (see § 1 of [1]), the class Ω_{f} is invariant under the iso-neighboring relation of proper embeddings of M in W.

The main result of the paper is as follows.
Theorem. If the Whitehead class Ω_{f} of f is the identity, f can be arbitrarily approximated by a p-flat embedding.

If C is an n-cell, then $H_{p}\left(C, \partial C ; G^{n-p-1}\right)=0$ for $0 \leq p \leq n-2$, and we have the following.

Corollary 1. Let C, D be n-, $(n+2)$-cells and $f: C \rightarrow D$ be a proper embedding. Then f is arbitrarily approximated by a locally flat embedding.

Since $H_{0}\left(M, \partial M ; G^{n-1}\right)=0$ for each manifold M with non-vacuous boundary ∂M, we have the following.

Corollary 2. Any 1-flat proper embedding $f: M \rightarrow W$ can be arbitrarily approximated by a locally flat embedding.

From now on it will be assumed that the embedding $f: M \rightarrow W$ is ($p+1$)-flat.

Notation. Let $\varphi: K \rightarrow L$ be a triangulation of f. Then ∂K means a subcomplex of K covering ∂M, and Int K means the set of simplexes $K-\partial K$. Let \triangle be an oriented r-simplex of ∂K. Then $\nabla_{\partial}\left(\square_{\partial}\right)$ is an
($n-r-1$)-cell ($n-r+1$)-cell) dual to $\triangle(\varphi \triangle)$ in $\partial K(\partial L)$ whose orientation is induced from $\partial \nabla(\partial \square)$ (for ∇, \square see [1]). The barycenter of \triangle will be denoted by c.

Lemma 1. For each oriented r-simplex \triangle of ∂K, the pair $\partial(f \nabla, \square)-\operatorname{Int}\left(f \nabla_{\partial}, \square_{\partial}\right)$ is homeomorphic to $(f L k(\triangle, K), L k(f \triangle, L))$, and is flat if $r>p$ and $(p-r)$-flat if $r \leq p$.

Proof. Since $(f \nabla, \square)$ is homeomorphic to the join $(f L k(\triangle, K)$, $L k(f \triangle, L)) * f c, \partial(f \nabla, \square)$ is homeomorphic to $\partial(f L k(\triangle, K), L k(f \triangle$, $L)) * f \mathrm{c} \cup(f L k(\triangle, K), L k(f \triangle, L))$. Since $\partial(f L k(\triangle, K), L k(f \triangle, L))$ is homeomorphic to $(f L k(\triangle, \partial K), L k(f \triangle, \partial L)), \partial(f L k(\triangle, K), L k(f \triangle$, $L)) * f c$ is homeomorphic to $\left(f \nabla_{\partial}, \square_{\partial}\right)$. Hence $\partial(f \nabla, \square)-\operatorname{Int}\left(f \nabla_{\partial}, \square_{\partial}\right)$ is homeomorphic to $(f L k(\triangle, K), L k(f \triangle, L))$. Let x be an interior point of \triangle, then $L k(x, \varphi)$ is homeomorphic to $\partial(\varphi \triangle) *(f L k(\triangle, K)$, $L k(f \triangle, L))$. The nthe last half of the lemma follows from the argument of Lemma 11 of 1.

Definition. In the paper a knot is a locally flat sphere pair and a node is a locally flat cell pair, see [1]. Let \triangle_{i} be an oriented p-simplex of Int K, then $\partial\left(f \nabla_{i}, \square_{i}\right)$ is an $(n-p-1)$-knot by Lemma 11 of [1]. By κ_{i} we denote the knot cobordism class of $\partial\left(f \nabla_{i}, \square_{i}\right)$. Then we have a p-chain

$$
\omega=\sum_{i} \kappa_{i} \triangle_{i}
$$

of $K \bmod \partial K$ with the $(n-p-1)$-knot cobordism group G^{n-p-1} as the coefficient group, where \triangle_{i} ranges over the p-simplexes of Int K.

It is shown by Lemmas 12 and 14 of [1] that this p-chain is a p-cycle of $K \bmod \partial K$ and that the homology class $\Omega_{f} \in H_{p}\left(M, \partial M ; G^{n-p-1}\right)$ of ω is invariant under the subdivision $\varphi: K \rightarrow L$, and is an invariant of the iso-neighboring relation. We call Ω_{f} the Whitehead class of the embedding f of M in W.

Lemma 2. Let (S, T) be a sphere pair such that $(S, T)=$ $\left(C_{1}, D_{1}\right) \cup\left(C_{2}, D_{2}\right)$, where C_{i}, D_{i} are $m,(m+2)$-cells, $i=1,2$, and $\left(C_{1}, D_{1}\right) \cap\left(C_{2}, D_{2}\right)=\partial\left(C_{1}, D_{1}\right)=-\partial\left(C_{2}, D_{2}\right)$. If $\left(C_{1}, D_{1}\right)$ is a node, there is a knot (\widetilde{S}, T) such that $(\widetilde{S}, T) \cap D_{1}=\left(\widetilde{S} \cap D_{1}, T \cap D_{1}\right)=\left(C_{1}, D_{1}\right)$ and (\widetilde{S}, T) is knot cobordant to zero.

Proof. Let ($C_{1}^{\prime}, D_{1}^{\prime}$) be a copy of (C_{1}, D_{1}), and identify D_{1}^{\prime} with $-D_{2}$ in such a way that $-\partial\left(C_{1}^{\prime}, D_{1}^{\prime}\right)$ and $\partial\left(C_{2}, D_{2}\right)$ are identified. Then $\left(C_{1}, D_{1}\right) \cup\left(-\left(C_{1}^{\prime},-D_{2}\right)\right)=\left(C_{1} \cup\left(-C_{1}^{\prime}\right), T\right)=\left(S^{\prime}, T\right)$ is a knot by the proof of Lemmas 6 and 7 of [1]. Let κ be a knot cobordism class of $\left(S^{\prime}, T\right)$ and x a point of $\operatorname{Int}\left(-C_{1}^{\prime}\right)$. Then $\operatorname{St}\left(x,\left(S^{\prime}, T\right)\right)=\left(C_{3}, D_{3}\right)$ is flat. By an argument similar to the one above, we may cut $\left(C_{3}, D_{3}\right)$ from $\left(S^{\prime}, T\right)$ and glue to $\left(S^{\prime}, T\right)$ a node $\left(C_{3}^{\prime}, D_{3}\right)$ with boundary $\partial\left(C_{3}, D_{3}\right.$), where $\left(C_{3}^{\prime}, D_{3}\right) \cup \partial\left(C_{3}^{\prime}, D_{3}\right) * y$ is a knot representing $-\kappa$. Then $\left(\left(S^{\prime}, T\right)-\operatorname{Int}\left(C_{3}, D_{3}\right)\right) \cup\left(C_{3}^{\prime}, D_{3}\right)=(\widetilde{S}, T)$ is knot cobordant to zero by Lemma 10 of $[1]$, and (\tilde{S}, T) is the
required knot.
Lemma 3. Let $g: M \rightarrow W$ be $a(p+1)$-flat embedding. Let \triangle be an oriented p-simplex of $\partial \widetilde{K}$, where $\widetilde{\rho}: \widetilde{K} \rightarrow \widetilde{L}$ is a triangulation of g. Then there is an $(n-p)$-node $(\widetilde{\nabla}, \square)$ such that $\partial(\widetilde{\nabla}, \square) \cap$ $\left(\partial \square-\operatorname{Int} \square_{\partial}\right)=\partial(g \nabla, \square)-\operatorname{Int}\left(g \nabla_{\partial}, \square_{\partial}\right)$, and we have an embedding $h_{\Delta}: M \rightarrow W$ such that
(1) $h_{\Delta}(M)=(g(M)-\operatorname{Int} g(\partial \triangle * \nabla)) \cup \operatorname{Int}(g \partial \Delta * \widetilde{\nabla})$
(2) $h_{\Delta} \mid M-\partial \triangle *\left(\operatorname{Int} \nabla \cup\right.$ Int $\left.\nabla_{\partial}\right)=g \mid M-\partial \Delta *\left(\right.$ Int $\left.\nabla \cup \operatorname{Int} \nabla_{\partial}\right)$
(3) h_{Δ} is flat at each point of $\partial \triangle * \nabla-\partial \triangle$.

Consequently, h_{Δ} is flat at a point x of Int M if g is.
Proof. Let $\partial(g \nabla, \square)-\operatorname{Int}\left(g \nabla_{\mathrm{\jmath}}, \square_{\mathrm{\partial}}\right)=(C, D)$; then $\partial(g \nabla, \square)=$ $(C, D) \cup\left(g \nabla_{\partial}, \square_{\partial}\right)$, and $(C, D) \cap\left(g \nabla_{\partial}, \square_{\partial}\right)=\partial(C, D)=-\partial\left(g \nabla_{\partial}, \square_{\partial}\right)$. By Lemma $1,(C, D)$ is an $(n-p-1)$-node, and by Lemma 2 , we have a knot ($\partial \widetilde{\nabla}, \partial \square$) which is knot cobordant to zero, and such that $(\partial \widetilde{\nabla}, \partial \square) \cap\left(\partial \square-\operatorname{Int} \square_{\partial}\right)=\partial(g \nabla, \square)-\operatorname{Int}\left(\nabla_{\partial}, \square_{\partial}\right)$. Then we have a node ($\widetilde{\nabla}, \square$) with boundary ($\partial \widetilde{\nabla}, \partial \square$) that has the required property.

The construction of the required embedding h_{Δ} using $\widetilde{\nabla}$ is the same as Lemma 15 of [1], and so we will omit the proof.

Proof of theorem. For a given ε-neighborhood of $f M$ in W, we subdivide K, L so fine that the diameter of the star of every simplex of φK in L is smaller than ε, where $\varphi: K \rightarrow L$ is a triangulation of f. Let $\omega=\sum_{i} \kappa_{i} \triangle_{i}$ be the p-cycle $\bmod \partial M$ obtained from φ. By the assumption $\Omega_{f}=0$, there is a ($p+1$)-chain γ of K such that $\partial \gamma=$ $\omega+\beta$, where β is a p-chain of ∂K. Then by the argument of the proof of the main Theorem of [1], we have an embedding $g: M \rightarrow W$ such that g is flat at $x \in\left(M-\left|K^{p}\right|\right) \cup \cup_{\Delta}$ Int \triangle, where \triangle is a p-simplex of Int K. Then by Lemma 15 of [1], g is ($p+1$)-fiat, and is fiat at $x \in\left(M-\left|\widetilde{K}^{p}\right|\right) \cup \cup_{\triangle}$ Int $\widetilde{\triangle}$, where $\widetilde{\triangle}$ is a p-simplex of Int K and $\widetilde{\varphi}: \widetilde{K} \rightarrow$ \widetilde{L} is a triangulation of g and \widetilde{K} is a subdivision of K. Define h by taking $h\left|\partial \triangle * \nabla=h_{\Delta}\right| \partial \triangle * \nabla$, and $h\left|\left(M-U_{\Delta} \operatorname{Int}(\partial \triangle * \nabla)\right)=g\right|(M-$ $U_{\Delta} \operatorname{Int}(\partial \triangle * \nabla)$), where \triangle ranges over the p-simplexes of $\partial \widetilde{K}$ and h_{Δ} is the embedding obtained in Lemma 3. Then h is a p-flat embedding, proving Theorem.

References

[1] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds (to appear).
[2] J. F. P. Hudson and E. C. Zeeman: On regular neighbourhoods, Proc,London Math. Soc., 14, 719-745 (1964).

