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By Yoto Kubota
Department of Mathematics, Ibaraki University

(Comm. by Kinjiré6 KUNUGI, M.J.A., June 13, 1966)

1. Introduction. The Cesaro-Perron integral was introduced
by J. C. Burkill [1] by means of major and minor functions using
inequalities relating to Cesaro-derivates. In extending such a defini-
tion to the Stieltjes type of integration with respect to a general
function which may attain the same value at an infinite set, there
would be difficulties. We shall define the Cesaro-Perron-Stieltjes
integral (CPS-integral) by the method of A.J., Ward [5] which uses
inequalities concering the increments directly and not in terms of
derivates with respect to a function.

The resulting integral is essentially an extension of the Cesaro-
Perron integral and we shall prove some continuous and differential
properties of the indefinite CPS-integral. However the relationship
between our integral and the PS-integral of A. J, Ward is still open,

2. Cesaro-continuity and Cesaro-derivates with respect to a
function. Let f(x), ¢(x) be real valued (finite) functions defined on
the interval [a,b]. We say that f(x) is Cesdro-continuous with
respect to ¢(x) at the point x, if for some number K

1) im{O(, w0 9 F )~ Kle@)—g(@)]}=0,
where we put
cf, 0, b)=-2— | sy,
—a Ja

the integral being taken in the special Denjoy sense. If in addition
we have

(2) w}?ﬁo {C(f, o, x)—f(xo)——%—K[go(w)—go(wo)]}/w(% [, ©])=0

then we say that the right-hand Cesdro-Roussel derivate of f(x)
with respect to ¢(x) at wx, is K, where w(p, [%, #]) denotes the
oscillation of ¢(x) on [, «], and write CD.(f, «,, ¢)=K. The ratio
in (2) is to be interpreted to mean 0 whenever its numerator and
denominator vanish together. When the oscillation of ¢ is finite, the
condition (2) evidently implies (1); however when w(p, [%,, ©])= 4+ oo,
the condition (1) plays an essential part.
We define three other derivates similarly and put



606 Y. KuBoTa [Vol. 42,

CD(f’ Loy (/7) = max {CD+(f’ Loy SD)’ CD—~(f’ Po, 90)}’
QQ(f: Do, §D) = min {@+(fy Lo, ¢), CD—-(f’ Lo, QD)}.
If they are equal then we write the common value as CD(f, x,, ¢).
3. The Cesaro-Perron-Stieltjes integral. First we define the
major and minor functions of f(x) with respect to ¢(x) on [a, b].
Definition 1. We say that M(x) is a major function of f(x)
with respect to ¢(x) if (i) M(a)=0,
and

(i) for any point x of [a,b] there exists a number &(x)>0
such that

(1) CM, z, t)—M(x)_Z_—;“f(x)[qa(t)——ﬂx)] if 0<t—w=0(x),

(2)  CULw )—M@=Lf@oh—¢@)] i —d@)=t—a<0.

Definition 2. We say that m(x) is a minor function of f(x)
with respect to ¢(x) if (i) M(a)=0,
and

(i) for any point x of [a,d] there exists a number a d(x)>0
such that

(3) C(m, x, t)—m(w)ééf(w)[so(t)—w(x)] if 0<t—w=0(w),

(4) C(m, =, t)~m(w)§%f(w)[¢(t)~<p(w)] if —d()=t—2<0.

Now we state an important Lemma to develope the theory
which is due to G. Sunouchi and M. Utagawa [4].

Lemma 1. If f(x) is a measurable function defined on [a,b]
and CD f(x)=0 at each point x of [a, b] then f(x) is non-decreasing
on [a, b], where CD f(x) denotes the ordinary lower Cesdro-derivate
of f(x) at .

Theorem 1. For any major and minor functions M(x), m(x)
of f(x) with respect to ¢(x) on [a, b], the function M(x)—m(x) is
non-decreasing on [a, b].

Proof. We put w(x)=M(x)—m(x). Then it follows from (1)
and (3) that for any point « of [a, d], there exists d(x)>0 such
that

C(M, z, t)—«M(x)%f(x)[so(t)—so(xn,
and
C(m, x, t)—m(x)%f(x)[so(t)—-go(xn, for 0<t—aw=<d(x).

Therefore
C(M, x, t)— M(x)=C (m, x, t)—m(x) for 0<t—ax=d(x).
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That is,
S[M(t) M(x)]dt>—1—s [mn(t)—m(z)]dt,

for 0<t—x_<__3(x).
Consequently we have
1

A S[w(t) —w(@)]dE=0 for 3<t=w-+o().
That is, for a<t=x+0d(x)
1 S 1
1 [w(t)—w(x)]dt/_(t-x)go.
—xr Ja 2

Hence we obtain

CD,o(x)=0.
Similarly we have from (2) and (4)
CD_w(2)=0,

and therefore
CDw(x)=0.

It follows from Lemma 1 that w(x) is non-decreasing on [a, b].
Definition 3. If a function f(x) has major and minor functions
M(x), m(x) with respect to ¢(x) on [a, b] and if
inf M(b)=sup m(b)
M m
then f(x) is termed integrable in the Cesdro-Perron-Stieltjes sense
with respect to ¢(x) or CPS-integrable with respect to <p(w) and we
denote the common value by (CPS)S F(tyde(t) or (CPS)S fdo.
We can now prove the following theorems as usual.
Theorem 2. If f(x) is CPS-integrable with respect to o(x)

on [a,b] then f(x) is also so in every sub-interval [a,x] for
a<lx=b.

Theorem 3. For indefinite integral F'(x),
F(o)=(CPS)| f(dott)
and any major and minor functions M(x), m(x), the functions
M(x)—F(x), and F(x)—m(x) are both non-decreasing on [a,b].
Theorem 4. (i) If f(x) is CPS-integrable with respect to
o(x) on [a, b] then for a<c<b,
b ¢ b
(CPS)Safdgoz(CPS)Su fdgo+(CPS)Scfdgo.
(i) If f(x) and g(x) are CPS-integrable with respect to ¢(x)
on [a,b] then af+pBg is also so and
b b b
(CPS)| (@f+Boydo=a(CPS)| fip+B(CPS)| gdo.

4. The properties of the indefinite CPS-integral.
Theorem 5. The indefinite CPS-integral of f(x) with respect
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to ¢(x) is Cesaro-continuous with respect to ¢(x) on [a, b].
Proof. Given ¢>0, we can choose the major function M(x)
such that

M®)<F(b)+e.
Since M(x)— F'(x) is non-decreasing on [a, b], we have
F)—F(x)=M(t)— M(x)—e for t>u.

Consequently we obtain
t—lw—st[F(t)—F(x)]dtgﬁSt[M(t)—M(x)]dt—e for t>w,
that is,
CF,x,t)—F(x)=C(M, x, t)—M(x)—e for t>u.

Hence, for 0<t—2x=0(x), we have from (1)
CF, v, 1)—F @)z F@)e()—p@)]—c.
Similarly we obtain using minor functions
CF, v, )—F (@)= 3 F@)Lo(h)—p()]+s

for —o(x)=t—x<0.
Therefore

C(F, v, t)—F(x)—-%—f(w)[so(t)—so(x)] <e

for 0<|t—x|=d(x) which completes the proof,

Lemma 2 (A, J. Ward [5]). Let E be any linear set. If
with each point x of E an interval (x,x+h), h depending on x, is
associated then given any number A (A<m,p(E)), we can find a
finite non-overlapping set of intervals (x,, x,+h,) such that

> m o[ B2, .+ h)]> A,

Theorem 6. If

F()=(CPS)| f(®)de(t (a=w=b)

then CD(F,x, o)=f(x) except at points of a set E such that
mo(E)=0.

Proof. If ¢(x) is constant on [a,bd], then F'(x) is also con-
stant, so that the equation CD(F,x, ¢)=f(x) is true in a conven-
tional sense,

Now we consider the set E, of points x, such that ¢(x) is not
constant in any interval [«,, «] and that
(1) Tm {C(F, 0, 00— Fa)— L f@)Lo@—e@)l} olp, [, 51)>0.

z—x9+0

We shall show that me(&)=0. Suppose that m,o(#,)>0, Then we
can find a natural number p such that the E, consisting of points
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2, at which

m {O(F, v, 9)— F)— £ f@)[o(@)—o@)]} oo, [a, 1) >1p,

z—2)+0 2
satisfies m,o(E,)>0. Take ¢ such that 0<e<m,p(E,) and a minor
function m(x) with
(2) F(b)—m(b)<e/p.
Since

Cm, 5, 2) = (@) S 3 @)L 9(@)— ()]
for all « sufficiently near to ®, (x>x,), we have, for x, in E,,

lim {C(F, @, 5)—Cim, @, 2)—[F@)—ms)]} X, [, 41)>1/p,

- 30+0
and therefore, for x,¢ E, and sufficiently small 2,>0,
C(F, ay, 2o+ ho)—C(m, @, %5+ hy)
—[F () —m(@o) 1 >1/p+ @@, [®o, To+ho]).
Applying Lemma 2 to the set E,, we can find a finite non-overlapping
set of intervals (x,, ,+h;) (k=1,2, .--, n) such that
(8) C(F, ay, @+ hy)—Clm, , €+ hy)

—F(x)—m(x) >1/p- e, (@, Tty ])
and

kE_J m, oL E, (), v+ hy)]>e.
Since

S (g, @, 0+ b )23 ol By, zt-hi)l,

we have from (3)
(0 2 LI Re-moae-3 Fe)—m@)1> <.
=1 Ny Joy k=1 D
The function F(x)—m(x) is non-decreasing (by Theorem 3) and
(24, 2.+ h;) is non-overlapping, so that we obtain from (4)
F(b)—m(b)>¢/p,
which is in contradiction to (2). Thus me(E,)=0,

Similar argument applied to three other sets defined by in-
equalities analogous to (1) would complete the proof of the theorem,
for we have already shown (Theorem 5) that F'(x) is Cesaro-
continuous with respect to ¢(x) at every point,

Next we shall prove that the CPS-integral is essentially an
extension of the ordinary Cesdro-Perron integral (CP-integral),

For any not necessarily finite function f(x) on [a, b], we define
the function f(x) which is equal to f(x) if f(x) is finite and equal
to 0 elsewhere,

Theotem 6. If f(x) is CP-integrable on [a,b], then f(x) is
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CPS-integrable with respect to ¢(x)=2 and
(1) P)| rat=(CPS)| Ftrde(e).

Proof. Since f(x) is CP-integrable on [a, b], f(x) is finite almost
everywhere, Hence f(x) is also CP-integrable on [a,b] and

b b
(2) (CP)SG f(t)dt:(CP)Sa Ftdt.
Given any ¢>0 we can find a ordinary major function M(x)
for f(x) with M(a)=0 such that

CDM(x)= f(x)
everywhere and such that

M(b)<(CP)Sb Ft)dtre.
We consider the function

M, (x)=M(x)+e(x—a)/(b—a).
Since CDM,(x)> f(x), we have for sufficiently small &(x)>0

{cat, =, - M@} [+ ¢—a)>Fw) if 0<|o—t| <o),
Thus M,(x) is a major function of f(x) with respect to ¢(x)=wx, and
Ml(b)<(CP)Sb F(t)dt +2e.

Similarly we can find 2 minor function m,(x) with respect to
o(x)=2 such that

(CP)Sb Ft)dt—2e< my(b).
Hence
Therefore f(x) is CPS-integrable with respect to ¢(x)=« and
b b
)| Ftyit=(cPS)| F®rdete),
where ¢(x)=2, which together with (2) implies (1).
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