170. A Pentavalued Logic and its Algebraic Theory

By Kiyoshi Iséki and Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

In this Note, we shall concern with a pentavalued logic by J. Lukasiewicz and its algebraic theory. The fundamental ideas are due to Professor Gr. C. Moisil (see [1] and [2]).

Let L be a set $\{x, y, z, \dots\}$ of propositions. The truth values we denote by 0, 1, 2, 3, and 4. We introduce the negation Nx of x by

The disjunction \lor and the conjunction \land are defined as follows:

\vee	0	1	2	3	4	\wedge	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	1	2	3	4	1	0	1	1	1	1
2	2	2	2	3	4	2	0	1	2	2	2
3	3	3	3	3	4	3	0	1	2	3	3
4	4	4	4	4	4	4	0	1	2	3	4

Then two operations \lor , \land satisfy the well known axiom of a distributive lattice, hence L is a distributive lattice. On the other hand, consider a commutative ring of characteristic 5, and denote the elements by 0, 1, 2, 3, and 4. Then we have 5x=x+x+x+x+x+x=0, and $x^5=xxxxx=x$.

The negation and the modalities have the following algebraic representations.

The negation Nx of x is algebraically denoted by Nx=4(x+1). The necessity

are denoted by $\nu x = x^4 + 4x^3 + x^2 + 4x$ and $\mu x = 3x^4 + 4x^3 + 4x^2 + 4x$ respectively.

In the pentavalued logic, there are two positive modalities as follows:

x	0	1	2	3	4
$N\mu Nx$ $N\nu Nx$	0	0	0	4	4
$N \nu N x$	0	4	4	4	4

These modalities are algebraically denoted by $N\mu Nx = 2x^4 + 2x^3 + x$, $N\nu Nx = 4x^4$.

Further there are following four modalities containing the negation functor N.

x					
Ννx Νμx νNx μNx	4	4	4	4	0
$N\mu x$	4	4	0	0	0
u Nx	4	0	0	0	0
μNx	4	4	4	0	0

These are denoted by

 $N
u x = 4x^4 + x^3 + 4x^2 + x + 4,$ $N \mu x = 2x^4 + x^3 + x^2 + x + 4,$ $u N x = x^4 + 4,$

and

 $\mu Nx = 3x^4 + 3x^2 + 4x + 4$.

The conjunction $x \wedge y$ is expressed by the polynomial

 $x \wedge y = (3x^2y^2 + 4xy)(x^2 + y^2) + 3xy(x^3 + y^3) + x^3y^3 + 2x^2y^2 + 3xy.$

Similarly the disjunction $x \lor y$ is expressed by

 $x \lor y = 2x^2y^2(x^2+y^2) + 2xy(x^3+y^3) + xy(x^2+y^2) + 4x^3y^3 + 3x^2y^2 + 2xy + (x+y).$

To find the above expressions, we must solve ten linear equations with 10 unknown. The calculations are not so easy, but we shall omit the detail.

References

- [1] Gr. C. Moisil: Sur les anneaux de caractéristique 2 ou 3 et leurs applications. Bull. de l'ecole Poly. de Bucarest, 12, 1-25 (1941).
- [2] ——: La logique mathématique et la technique moderne. Les logiques à plusieurs valeurs et les circuits à contacts et relais (in Roumanian), Probleme filozofice ale stiintelor naturii, Bucarest (1960).

764