170. A Pentavalued Logic and its Algebraic Theory

By Kiyoshi Iséki and Shôtarô Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1966)
In this Note, we shall concern with a pentavalued logic by J. Lukasiewicz and its algebraic theory. The fundamental ideas are due to Professor Gr. C. Moisil (see [1] and [2]).

Let L be a set $\{x, y, z, \cdots\}$ of propositions. The truth values we denote by $0,1,2,3$, and 4 . We introduce the negation $N x$ of x by

$$
\frac{x}{N x} \left\lvert\, \frac{0,1,2,3,4}{4,3,2,1,0} .\right.
$$

The disjunction \vee and the conjunction \wedge are defined as follows:

\vee	0	1	2	3	4
0	0	1	2	3	4
1	1	1	2	3	4
2	2	2	2	3	4
3	3	3	3	3	4
4	4	4	4	4	4

\wedge	0	1	2	3	4
0	0	0	0	0	0
1	0	1	1	1	1
2	0	1	2	2	2
3	0	1	2	3	3
4	0	1	2	3	4

Then two operations \vee, \wedge satisfy the well known axiom of a distributive lattice, hence L is a distributive lattice. On the other hand, consider a commutative ring of characteristic 5 , and denote the elements by $0,1,2,3$, and 4 . Then we have $5 x=x+x+x+x+$ $x=0$, and $x^{5}=x x x x x=x$.

The negation and the modalities have the following algebraic representations.

The negation $N x$ of x is algebraically denoted by $N x=4(x+1)$.
The necessity

$$
\begin{array}{c|lllll}
x & 0 & 1 & 2 & 3 & 4 \\
\hline \nu x & 0 & 0 & 0 & 0 & 4
\end{array}
$$

and the possibility

$$
\begin{array}{c|lllll}
x & 0 & 1 & 2 & 3 & 4 \\
\hline \mu x & 0 & 0 & 1 & 1 & 1
\end{array}
$$

are denoted by $\nu x=x^{4}+4 x^{3}+x^{2}+4 x$ and $\mu x=3 x^{4}+4 x^{3}+4 x^{2}+4 x$ respectively.

In the pentavalued logic, there are two positive modalities as follows:

$$
\begin{array}{c|lllll}
x & 0 & 1 & 2 & 3 & 4 \\
\hline N \mu N x & 0 & 0 & 0 & 4 & 4 \\
N \nu N x & 0 & 4 & 4 & 4 & 4
\end{array}
$$

These modalities are algebraically denoted by $N \mu N x=2 x^{4}+2 x^{3}+x$, $N \nu N x=4 x^{4}$.

Further there are following four modalities containing the negation functor N.

x	0	1	2	3	4
$N \nu x$	4	4	4	4	0
$N \mu x$	4	4	0	0	0
$\nu N x$	4	0	0	0	0
$\mu N x$	4	4	4	0	0

These are denoted by

$$
\begin{aligned}
& N \nu x=4 x^{4}+x^{3}+4 x^{2}+x+4, \\
& N \mu x=2 x^{4}+x^{3}+x^{2}+x+4, \\
& \nu N x=x^{4}+4,
\end{aligned}
$$

and

$$
\mu N x=3 x^{4}+3 x^{2}+4 x+4 .
$$

The conjunction $x \wedge y$ is expressed by the polynomial

$$
x \wedge y=\left(3 x^{2} y^{2}+4 x y\right)\left(x^{2}+y^{2}\right)+3 x y\left(x^{3}+y^{3}\right)+x^{3} y^{3}+2 x^{2} y^{2}+3 x y
$$

Similarly the disjunction $x \vee y$ is expressed by

$$
\begin{gathered}
x \vee y=2 x^{2} y^{2}\left(x^{2}+y^{2}\right)+2 x y\left(x^{3}+y^{3}\right)+x y\left(x^{2}+y^{2}\right) \\
\\
+4 x^{3} y^{3}+3 x^{2} y^{2}+2 x y+(x+y) .
\end{gathered}
$$

To find the above expressions, we must solve ten linear equations with 10 unknown. The calculations are not so easy, but we shall omit the detail.

References

[1] Gr. C. Moisil: Sur les anneaux de caractéristique 2 ou 3 et leurs applications. Bull. de l'ecole Poly. de Bucarest, 12, 1-25 (1941).
[2] -: La logique mathématique et la technique moderne. Les logiques à plusieurs valeurs et les circuits à contacts et relais (in Roumanian), Probleme filozofice ale stiintelor naturii, Bucarest (1960).

