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1. Introduction. In recent years, interest in discontinuous
solutions of the Cauchy problem for nonlinear partial differential
equations has conciderably increased and much progress has been
made for quasi-linear first-order equations of conservation type in a
single space variable (see Oleinik [3 for a survey of literatures).

In the case of several space variables, using a finite difference
scheme, Conway and Smoller _1 has proved the existence of weak
solutions of the Cauchy problem

(1.1) ut+ 3f(u) -0
=1 x

with a bounded measurable initial function having locally bounded
variation in the sense of Tonelli-Cesari. A function f is said to have
locally bounded variation in the sense of Tonelli-Cesari over R if
for any compact set K in R there exists a set N of measure zero
such that
V(x,... ,x_, x+,... ,x)- Var f(x,...,x_,., x+,..., x), i- 1,... ,n

is measurable and summable, and we denote by F the class of these
functions.

The purpose of this paper is to prove the existence of weak
solutions of the Cauchy problem of the type:

(1.2) +, if(t, x, )+(t, x, )=0,

(1.3) u(O, x)--Uo(X) e F.
For simplicity, we restrict ourselves to the case n-2. But it will
be easily seen that one can extend at once everything which we do
in this case to the case n_>_3. Thus we shall consider the Cauchy
problem

(1.4) u---- f(t, x, y, u)/ g(t, x, y, u)/ h(t, x, y, u)-O,

(1.5) u(O, x, y)--Uo(X, y) e F,
in the region

G={(t, x, y); 0___t__< T<oo, --oo<x,
We call a function u(t, x, y) a weak solution of (1.4), (1.5) if it
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satisfy the relation

(1.6) III u+f+g--h(fdxdydt+IIUo(X, y)q(O, x, y)dxdy-O
G t--0

for any C function (f-(t, x, y), equal to zero outside a finite
region, also for t-T.

The assumptions concerning the f, g, and h are followings"
i) the f, g, and h, and also the partial derivatives f, f,

f, f, f, f,,, f, g, g, g, g, g, g, g, g, h, h, and h are
continuous for all u and (t, x, y) in G, and bounded for bounded u and
(t, x, y) in G;

ii) there exist continuously differentiable functions V(v) and
V(v), defined for v0, such that

max f+h < V(v), dV(v)o
(t.,)ee dv

max g+ 1 h’ < V(v), d V:(v) 0,)
ulv

and such that for any v00
(1 7) dv

V (v)
In other words, the results obtained here is

Theorem. Let the f, g, and h satisfy the conditions i) and ii).
If Uo e F, then there exists a weak solution u(t, x, y) of (1.4), (1.5)
in G such that u(t, x, y) is of locally bounded variation in the sense

of Tonelli-Cesari in G, and u(t, , y) e F for each fixed t, 0 t T.
This theorem will be proved by means of finite difference scheme.

The finite difference scheme used here is a slight modification of
that of Conway and Smoller 1 and more closely related to that
of Oleinik 3.

In section 2, we introduce the finite difference scheme and obtain
estimates for the solution of these equations, corresponding to Lemmas
1, 2, 4 in Conway and Smoller 1. Therefore, we can prove the
theorem in the same way as in section 3 of 1. In section 3, we
shall prove the theorem. Section 4 consists of some remarks.
Detailed proof will be published elsewhere.

2. stimates for the dierence equations. Let the domain
G be covered by a grid defined by the planes

t=kr, x=mp, y-nq,
where r, p, and q are fixed positive numbers, k are integers such
that 0 k TitS, and m and n assume all integers.

i 1
1) In the case n--m, this condition becomes max fx+--g <= V(v),

i--1, ..-, m.



No. 7_] Discontinuous Solutions of Cauchy Problem 707

In G, we consider the finite difference scheme defined by

r L ’-- -’-+ -’++u+’-+

+ Ef,,, f,,--f-,+ --f_,_
0

(2.)
gm-i,n+i--’gm+i,n-l’--gm-l,n-i]

hm+i,n-i+- 2h+,++ +h_,+] -0,

where we are using notations
t=kr, x:mp, y=nq, u,=u(t, x, yJ, f,=f(t, x, y., u,)

etc.
Let us divide the grid points into four classes as follows:

S={(t, x, yJ; both k-m and k-n are even},
S={(t, x, yJ; k-m is even and k-n is odd},
S={(t, x, yJ; k-m is odd and k-n is even},
S={(t, x, y); both k-m and k.-n are odd}.

Then, by virtue of the obvious property of the finite difference
scheme (2.1), it is easy to see that the values u, at the points of
S and S for ij are computed independently. Hence, it is suf-
ficient to consider u, only at the points of S.

It follows from (1.7) that for any M, >0 there exists a con-
stant M>0 such that

(.)
gv

T.
o V(v)+ V(v)+

Lemma 1. Let Mu, for all m and n, and A and B be
defined by

A= max]f , B= maxg],

where 9={(t, x, y, u); (t, x, y)e G, ]u] M}.
Then, if the stability requirements Ar/p+Br/q 1 are fulfilled

for suciently small p and q we have u, <M for all values
of k, m, and n.

If we let p and q so small that p.max]f]+q.maxg]<,
then we obtain this lemma in an analogous way to Theorem 5.1 of
Douglis [2].

In what follows we shall assume the stability condition Ar/p+
Br/q<l, and let u,, be solutions of the finite difference equation
(2.1) with u., ]M.

Put
m--, Z, ,n-(2.8) w,_u, u, -u

2p 2q

2) See section 3 of Douglis [2].
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Then, we get
Lemma 2. If p<r, q 5’r, then

z, 14pq
Ilp<Z"

(2.4) De DZ ( w, J+z, J)4pq+
where D=4(X+Bkr)(Y+B’kr)(D’ +D"),

D’=.max g J+ max g + max h J+ 2. max

D"-.max f ]+ max L ]+ max h +2.max

and C= max (max[A + max]f + maxh I,
max ]g ]+ max g ]+max ]h

This lemma asserts that if an initial grid function u, has
locally bounded variation the solution u, of (2.1) with initial data

also has locally bounded variation for each fixed time level.
From Lemma 2 it follows
Lemma . If p<r, q<’r, then, for an even

(2.5) u,,--u, ]4pq(k-j)rL,
ImlpX
]n]qY

and, for an odd
(2.6) u; [4pq<(k--j)rL, j-0, 1, k 1

Imlpx
InlqY

where L--2.max (3, ’)K+4(X+Sr)(Y+’r)E V(M)+ V(M)+, and
K is the right hand side of (2.4).

This lemma can be proved in a similar way to Lemma 4 of
Conway and Smoller 1.

See also Oleinik 3; Lemma 4J.. Proofs of the theorem. On the basis of three lemmas
obtained in the last section, one can prove the theorem in the
same way as in the section 3 of Conway and Smoller 1, except
for Lemma 7 there.

Consider a solution u, of (2.1) over S as a step function
defined by

u(t, x,
for ttt+, xxx+, yyy+:, (t, x, y)e S.

Then, we have consequently that, if u0 e F, then there exists a
sequence {U(t, x, Y)}7= of solutions of (2.1)such that for each fixed
t, O t T, U(t, x, y) converges to some u(t, x, y) e F in the sense of
L over any compact set in R uniformly with respect to t, where
u(t, x, y) have locally bounded variation in the sense of Tonelli-Cesari
in G, and such that U(0, x, y) converges to u0(x, y) in the topology
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of L on compacta in R.
Therefore, in order to prove the theorem, it remains only to

show that u(t, x, y) thus obtained is a weak solution of (1.4), (1.5).
This is an immediate consequence of the following lemma.

Lemma 4. The function u(t, x, y) satisfy the relation

(1.6) f ffEu+f +g--h]dxdydt+ f l Uo(X, y)(O, x, y)dxdy-O,
G t=0

for any C function ?-(t, x, y), equal to zero outside a finite
region, also for t- T.

We can prove this lemma by means of a device used by Oleinik
in Lemma 7 of 3].

4. Concluding remarks. 1. As in Douglis [2, without loss
of generality, we can make f, i-1, ..., n, nonnegative for u ]M
and for (t, x) in G under a suitable change of independent variables.
In such a case, instead of (2.1), we may use the following difference
scheme

(2.1)’ 1---(u+,1 u,)/ l(f,--f_l,)/l(g, g,_l)+ --0.
r p q

2. In the case n-2, if f=f and f_>-0, and f:>/>0 for
bounded u and for _>_t>__0, where / and r are certain positive
numbers, then one can establish that the weak solution obtained
here satisfies the relation

u(t, x/d, y/d)-u(t, x, y) <E_
d --t’

for some constant E>0, and for any d.
This inequality is obtained in a similar way to the proof of

lemma 2 in Oleinik [3 by setting p=q in (2.1).
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