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196. A Probabilistic Treatment of Semi.Linear
Parabolic Equations

By Tunekiti SIRAO
Nagoya University

(Comm. by Kinjir6 KuNuc.I, M.J.A., Oct. 12, 1966)

Recently N. Ikeda, M. Nagasawa, and S. Watanabe have given
a definition of branching Markov processes in general set up and
have gotten several results about their structure 1, 2, and 3.
The purpose of this paper is to extend their methods in order to

give a probabilistic treatment for semi-linear parabolic equation

zlu-+-F(u) which was discussed by A. Kolmogoroff, I. Petrovsky,
2

and N. Piscounoff 5 (abbreviated as KPP-equation). When we deal
with KPP-equation, one of the difficulties comes from the fact that
some coefficients of F(u) may be negative even when F(u) is a
polynomial. In general, it happens that the solution of a semi-linear
parabolic equation takes negative values and infinite values even for
a positive bounded initial value. So if we want to treat it in
probabilistic way, we must introduce some artificial procedure. One
possible way is perhaps to permit the fundamental probability measure
of the process to take signed values and infinite total mass. But we
do not take this way. In this paper it is solved by introducing two
kinds of technical operation, but it will be seen that they have natural
intuitive probabilistic interpretation. One of them is to extend the
state space of the processes in appropriate way, and the other is to
make an operation to the initial value (cf (1.1) and (3.2)).

1. Notations and definitions. Following 2, we introduce
some notations. Let R be d-dimensional Euclidian space, R be the
one-point compactification of R, and let N= {0, 1, 2, 3, }. Also,
let S-R N be the topological sum of R {i}, i e N. We denote
the n-fold product of S with itself by S and we say that
z--((x, k), (x, k.), ..., (, k)) e S is R-equivalent to z’-((x, k),
(x, k), ..., (x’, k’))eS, if (x, x., ..., x) is obtainable by a per-
mutation of (, ’., x’) and if k+k+ +k-k+k... + k’.
Let us denote the quotient spaces S/R by S, and write z-(x, k)
if x--(, x,, ..., ) and k-(k, k, ..., k). In the following, we
write as

Now, R-{x; z-(x, k) e S} and S are metric spaces. Let us



886 T. SIRAO Vol. 42,

consider the topological sum S, where S= {6} U N, 6 being an extra
----0

point. Clearly [3 S is isomorphic to t3 R x N. Let S-
0 =0 =0

be he one-poin eompaeifieaion of , and 6’(8) be he space of
=0

bounded continuous functions on . We also use he space C*(R)
of all continuous functions on R wih tlfll<__l, and he space B(R)
of measurable functions on

For non-negative , we define a mapping / from f e B(R) to the

space of measurable functions on J S by
----0

/ {’’, if z-(, k) e S
(1.1) f. 2 (z)- .2,kl f(xl)f(x.) f(x) if z- (x, k) e S
where x= (x, x, ..., x) and k-(k, k_, ..., k). For the convenience

of later use, we put f. 2 (z/)- 0.
For 2.<_- 1, f. e C(S), but when 2> 1, f. 2 is an unbounded function.
Definition 1.1. A right continuous strong Markov process

Y,-(Xt, Kt), , ., P,; z e S} on S is said to be a branching Markov
process with age, if its semi-group {T,; t>__0} satisfies

(1.2) Tt(f.)- (Tt(f. 2)) I" 2, for f e C*(R), 1)

where >=0 and t>=0 vary over the values to which the both side
of (1.2) have definite values.

Clearly if 2__<1, they are bounded for all t_>_0. We remark also
that if we impose always 2-1, the above mentioned process reduces
to a branching Markov process treated in [2. Intuitively, the process
Y,-(X,, K,) may be considered as follows: Xt denotes the position
of n-particles, while Kt denotes the ages of the particles, but we are
only interested in the total of ages.

Now we put
,(w)- n, if Y(w) e S’,

and define the following Markov times:)

r(w)- inf {t; ,(w)0(w)}, (inf = co),
a(w)-inf {t < z’;IK(w) l]Ko(w)I}, (inf = co),
Vo(W) 0, r(w) v(w), and r(w) r_(w)+ O,_r(w), (n >__ 2),
a0(w)-0, a(w)-a(w), and a,(w)-a_(w)+O,,_a(w), (n_>_2).

v is called the first branching time.
2. S.equation 1. Let {Y-(X, K), , _,, P,; z e S} be a branch-

ing Markov process with age on S. We assume that Y, satisfies
the following condition.

Condition 1: It holds that

1) For f(x, k) defined on S, fl Td(x)=f I-d {0} (X, 0).
2) A non-negative random variable is said to be a Markov time if {w; r(w)<

for any _0. Cf. eg.
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P(,)EX, e ,B K, I-+-P(,o)EX, e B, Igl-, (x, ) e S,
for any Borel set Bc U R and p e N.

0

(ii) Ktl is increasing in t, and for any A e ,)it holds that
P(,o)A, K I-I K_+ 1, a<v P(,o)A, a<v, x e R.

(iii) There exist a positive bounded function k(x) and a system
{q(x); n-0, 2, 3, 4, ...} of non-negative Borel measurable functions
on R such that q(x)-k(x) and that for any Borel set B c S

P(,o)( Y: B Iv, Y:_-(a, p))-q(a)6(,,)(B)/k(a), x R,
where a-(a,a,...,a) eR, and p-(p,p:,...,p) with [p[-p.
Moreover, for any Borel set BcS,

P(,o)(X B, K,-p a, Y_)-6(x_,_+)(B, p), x R.
(iv) For any Borel set BCR and (x, k)e S, it holds that

(X.)ds

and

Now, let us consider the process y0 on S which is obtained by
killing Yt at the first branching time v and restricted on S, and
denote the probability measure of y0 by P,,). The integration by
p(0,), and the semigroup of y0 are denoted as E(,) and T, respectively,
i.e. for any f B(R),

(2.1) T f.2 (x, k)-E,)[ f.2(Y)-E(,)[ f.2(Yt);
Theorem 2.1. Let Yt be a branching Markov process with age

on S satisfying the condition 1. If u(t, x)-Ttf.2 (x, O) exists for
x R and tO, then u(t, x) is the solution, with the initial value f,
of the integral equation (S-equation)

(e.) (t, x)- Tg f. (, 0)+ g((, 0), , (, ))’F(v, (t-, v),
where K is defined by
(2.3) K((x, 0), dt, B)-
for any x e R and any Borel subset B of S, and F is defined by

1 , q(x)u.(2.4) F(x, u)
k(x)

Proof is obtained by using Dynkin’s formula [6 and the condition 1.
:. S.equation 2. It must be noticed that in (2.4), q, is

non-negative and n-1 is omitted in the summation. In this section
we shall exclude this limitation. Let S be the product space SJ
of S and J={0, 1, 2, 3}.

3) For any Markov time r, : denotes the a-algebra generated by the set A
such that A. and, for any t, AN{r<t}t.
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Now, taking 2>_-0, we define a mapping from f e B(R) to the
space of measurable functions on SJ by

(3.1) f.’(x, k, j) (1)[-]f.2 (x, k),
where (x, k, j) e S J.

Definition 3.1. A right continuous strong Markov process
{Z, (X, K,, J,), {, 0,, P(,,.); (z, j) e S x J} is said to be a signed
branching Ma’tcov process (with age), if its semi-group { U,; $ >_-0}
satisfies

(3.2) U,f. U, f.) l",’ for f e C/),
where >-0 and >=0 vary over the values to which the both sides
of (3.2) have definite values.

We define the first branching time 7] of Z by

](w)- inf {; J(w)Jo(w)}/ v(w),
where v is the first branching time of Y,-(X,, K,), and put

]0(w) 0, ](w) 7](w), and ?(w) ]_(w)+ 0,_](w), (n_>- 2).
Now, we assume that Z, satisfies the following condition.

Condition 2. There exist a positive bounded function k()
and a system {(q+(x), q:(x)); n-0, 1, 2, 3, } of non-negative bounded
Borel measurable functions on R such that q+()q:(c)-O and, (q+ (x) + qj(x)) k(x).
=0

ii If we write, for short,
P(,,,[ Y, e Z, J,=j’ Z,_ [j, j’, for (x, k) e Z,

then it holds that
0, 1- 1, 0- 2, 3- 3, 2-q+(X,_)/k(X,_), and
0, aj- 1, 2- 2, 1- a, 0-qj(X,_)/k(X,_).

(iii) For any fixed j e J, { Yt- (Xt, Kt), t, P(,,); z e S} is, independ-
ent of j, a branching Markov process with age on S (cf. Def. 1.1),
and it satisfies the condition 1, if we put q(x)-q+(x)+qj(x) and
replace v by ] in condition 1, (iii) (the case n-1 must be included).

The above defined signed branching Markov process has an
intuitive interpritation as follows" S x{0} and S x{1} represent a
positive world, while S{2} and S{3} do a negative (or anti)
an world, and a particle travels both worlds bringing the effects
of these world subject to Markov property.

Now, we state
Theorem 3.1. Let Zt be a signed branching Markov process

on SJ satisfying the condition 2. If u(t, x)- Utf.2 (x, 0, 0) exists
for x e R and t >_-0, then u(t, x) is the solution, with the initial value

4) For f(x, k, ) defined on SJ, fl-d(X)=f[ gt0}{0}(X, 0, 0).
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f e C*(R), of the integral equation (S-equation)

(3.3) u(t, x)- Utf.,(x, O, O)

+ g((x, O, 0), ds, d(y, p, 0))2"F(y, u(t-s, y)),
S

where Ut, K, and F are defined by

(3.4) Utf. ,(x, O, O)- E(,o,o)[f. 2(Zt); t <],
(3.5) K((x, O, 0), ds, g(y, p, 0))-P(,0,0)[] e ds, Y,,_ e d(y, p), and

(3.6) k(x)F(x, u) , (q+(x) q7(x))u.
’-0

Proof is obtained by Dynkin’s formula and the condition 2.
4. A probabilistlc approach to KPP.equation. A. Kolmogoroff,

I. Petrovsky, and N. Piscounoff [5 discussed a parabolic equation

(4.i) au 1 au + F(u),)
at 2 #x

where F satisfies the following conditions:
F(0) F(1) 0, F(v) > 0 (0 < v< 1), and

(4.2) F’(0) 1 > F’(v) (0 < v <-_ 1).
As is well known, the solution of (4.1), with initial value f, is given by

(4.) u(t, x)- I+ (y_)2

t/--- .,-
e :t f(y)dy

+ ds e , F(u(t-s,y))dy.
_.v/--s

Now let us denote the killed process of Zt at the time ]Aa by

Z’-(X K,) and assume that X is the ex - (B,)g-

subroeess of standard Brownian motion B. oreoer we assume
that N defined by (.6) satisfies the condition N(, O)-N(w, 1)-0.
In this ease, Uf.(, O, O) exists for small t and ONfe *(Re), and
we have

1 + ()f(y)dy,(4.4) U2f.2(x 0 0)- e-,,
_

(4.5) K((x, O, 0), ds, d(y, p, 0))2F(y, u(t-.s, y))
S

gl_/e . (, (t-, )).

If we compare (3.3) with (4.3) and note (4.4) and (4.5), then we see

that u(t, x)-Utf.2(x, 0, 0) is the solution of (4.1) if k(x) is constant
and F(u)=2, (q+-q)u’. When F(u) is not analytic in u, we

=1

approximate F by polynomials F in 0, 1, satisfying F,(O)-F,(,)
0, 0<.< 1. Let Z() be the process which corresponds to F. in

the sense of Theorem 3.1, then we can define a sequence of

5) Here the dimension d is one. Trivially, this assumption is not essential.



890 T. SIRA0 Vol. 42,

U(t, X; f) U)f. 2(x, O, 0), U denoting the semi-group for Z(’),
which is the solution of (4.1) replaced F by F. Using the fact
that F converges to F uniformly in _0, 1, we can see, for any
TO, u(t, x; f) is an uniformly convergent sequence in t e 0, T.
This shows that the solution of (4.1) with the initial value

O.<___fe C*(R) can be expressed as the limit of U)f.2(x, O, 0).
Remark. If we consider a diffusion process, instead of Brownian

motion, whose generator is A- a(x)3:/3x3x with some conditions
on a., then we can treat the solution of

u F(u).

5. Remark to construction of the processes. We shall give
some comments about eonstruetion of the processes treated above.
Starting from the given quantities, that is, Brownian motion, k(x),
and (q+(), q()), we can construct the process satisfying the condition
2 and (4.4). To do this, we can adopt the method of N. Ikeda,
M. Nagasawa, and S. Watanabe [4]. The key points are to construct
an integral kernel appropriately and to cheek some analytical conditions.
Then Moyal’s results [7] are ready to apply for it. The author has
been eommunieated from M. Nagasawa that the processes discussed
above ean be constructed probabilistieally in general set up.
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