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In our papers (1, 5), by using J. Lukasiewicz method, we
proved that the Russell system:
1 CpCqp,
2 CCpqCCqrCpr,
3 CCpCqrCqCpr,
4 CNNpp,
5 CCpNpNp,
6 CCpNqCqNp

is equivalent to the classical propositional calculus.
In my paper 2, the propositional calculus satisfying the

conditions 1-3, 5 and 6 mentioned above is called a NB-sys$em.
For any implicational calculus not containing the negation functor
N, we introduce the symbol ’0’ as a propositional constant, and
define Np as CpO (for details, see 4, pp. 50-51).

As well known, an axiom system of the positive implicational
calculus is given by J. Lukasiewicz as follows:
7 CpCqp,
8 CCpCqrCCpqCpr.

In our paper 1, we deduced some theses from 7 and 8. For ex-
ample, we proved the following theses:
9 CCpCqrCqCpr,

10 CCpqCCqrCpr,
11 CCpCpqCpq.

We define
12 Np-- CpO,
where 0 is a propositional constant.

9 /0 *C1213,
13 CCpNqCqNp.

11 q/O *C1214,
14 CCpNpNp.
Therefore we have the NB-system.

If we add two axioms:
15 CCqpCCCpqqp
and Wajsberg axiom
16 COp,
then as already shown in A. N. Prior (4, p. 51), by these axioms
we have
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17 CNNpp.
Hence we have the Russell system of the classical propositional
calculus.

We have some axiom systems of the positive implicational
calculus, for example, the single axiom by C. A. Meredith [3:
18 CCCpqrCsCCqCrtCqt
or
19 CtCCpqCCCspCqrCpr.
The proof of 18@7, 8 is found in C. A. Meredith [3. On the
other hand, recently S. Tanaka gives a proof of 19@7, 8. They
have not given the proofs of these converses, so we give the proofs
by an algebraic technique (for details, see [2). Following my
method, axioms 7, 8 are written in the forms of
20 p,qp,
21 (r, p), (q, p)(r, q), p.
Thesis 9 means a commutative law:
22 (r, p) , q < (r,q), p.
As shown in [1, we have:
23 pq implies p,rq,r and r,qr,p
in the positive implicational calculus. To prove thesis 19, consider
q,p<p and (t,r),(t,r)=O, i.e. t,(t,r)r by (22). By (23), we
have

(t,(t, r)), q <r,q < r, (q , p).
On the other hand, by (21), we have

(t q) ((t r) q) < (t (t r)) q.
By these two results, then

(t,q),((t, r),q)r, (q , p),
hence

((t q) ((t r), q)), (r (q p))
By (22), we have

((t q) ((t r) q)) s r (q p),
which is the thesis 19.

To prove the thesis 20, consider p, sp, then by (23), we have
(r,q),p(r,q),(p,s).

By (21),
(r, p), (q , p) < (r,q), p,

hence
(r, p), (q , p)(r,q),(p,s).

Then, by (22), we have
(r, p),((r,q),(p,s))q, p,

which means
((r p) ((r q) (p s))) (q p) < t.

This is the algebraic form of the thesis (20). We complete the
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proofs of (19), (20). Therefore we have the following
Theorem 1. The NB-system is obtained fvon one of
(i) CpCqp, CCpCqrCCprCq’, Np- CpO,
(2) CCCpq’CsCCqC’tCqt, Np- CpO,
(3) CtCCpqCCCspCq’Cp, Np Cp0.
Further we have
Theorem 2. The classical propositional calculus is characterized

by one of
(1) CpCqp, CCpCqrCCpqCpr, CCqpCCCpqqp, COp,
(2) CCCpqrCsCCqCrtCqt, CCqpCCCpqqp, COp,
(3) C$CCpqCCCspCq’Cp’, CCqpCCCpqqp, COp,

where we define Np- CpO.
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