189. On the Absolute Logarithmic Summability of the Allied Series of a Fourier Series

By Fu Yeh

Department of Mathematics, Tsing Hua University, Taiwan, China (Comm. by Zyoiti Suetuna, m.J.A., Oct. 12, 1966)

1. Introduction. §1.1. Definition.*) Let $\lambda=\lambda(w)$ be continuous, differentiable and monotone increasing in $(0, \infty)$, and let it tend to infinity as $w \rightarrow \infty$. For a given series $\sum_{1}^{\infty} a_{n}$, put

$$
C_{r}(w)=\sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r} a_{n} \quad(r \geqslant 0)
$$

Then the series $\sum_{1}^{\infty} a_{n}$ is called to be summable $|R, \lambda, r|(r \geqslant 0)$, if for a positive number A,

$$
\int_{A}^{\infty}\left|d\left[\frac{C_{r}(w)}{\{\lambda(w)\}^{r}}\right]\right|<\infty .
$$

For $r>0$, we have

$$
\frac{d}{d w}\left[\frac{C_{r}(w)}{\{\lambda(w)\}^{r}}\right]=\frac{r \lambda^{\prime}(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r-1} \lambda(n) a_{n} .
$$

Hence $\sum_{1}^{\infty} a_{n}$ is summable $|R, \lambda, r|(r>0)$, if and only if

$$
\int_{\Delta}^{\infty}\left|\frac{r \lambda^{\prime}(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r-1} \lambda(n) a_{n}\right| d w<\infty .
$$

§1.2. We suppose that $f(t)$ is integrable in the Lebesgue sense in the interval $(-\pi, \pi)$, and is periodic with period 2π, so that

$$
f(t) \sim \frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\frac{1}{2} a_{0}+\sum_{1}^{\infty} A_{n}(t)
$$

Then the allied series is

$$
\sum_{1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{1}^{\infty} B_{n}(t) .
$$

We write

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{1}(t)=\frac{1}{\log (2 \pi / t)} \int_{t}^{\pi} \frac{\psi(u)}{u} d u \tag{2}
\end{equation*}
$$

In my thesis [2], I have proved that, if $t^{-1} \psi_{1}(t)\left(\log \frac{2 \pi}{t}\right)^{2}$ is integrable in $(0, \pi)$, then the allied series of the Fourier series of $f(t)$ is summable $|R, \log w, 2|$. The object of the present paper is to prove the following

Theorem. If the integral $\int_{0}^{\pi} t^{-1}\left|d \psi_{1}(t)\right|$ exists, then the allied
*) Mohanty [1].
series of the Fourier series of $f(t)$, at $t=x$, is summable $\mid R, \log w$, $1+\delta \mid$, where $0<\delta<1$.
2. Proof of the theorem. § 2.1. We write

$$
\begin{equation*}
g(w, t)=\sum_{n \leqslant w} \log n\left(\log \frac{w}{n}\right)^{\delta} \sin n t \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
h(w, t)=\sum_{n \leqslant w} n^{-1} \log n\left(\log \frac{w}{n}\right)^{\delta} \sin ^{2} \frac{n t}{2} . \tag{4}
\end{equation*}
$$

For the proof of the theorem we require the following lemmas:
Lemma 1. $g(w, t)=O(w \log w)$.
Proof. By (3), we write

$$
|g(w, t)| \leqslant \sum_{n \leqslant w} \log n\left(\log \frac{w}{n}\right)^{\delta}=\sum_{\left.n<w^{1 /(1}+\delta\right)}+\sum_{\left.w^{1 /(1}+\delta\right) \leqslant n \leqslant w}=P+Q .
$$

By the second mean value theorem, we have

$$
\begin{aligned}
P & \leqslant \int_{1}^{w^{1 /(1+\delta)}} \log u\left(\log \frac{w}{u}\right)^{\delta} d u+O\left(\log w(\log w)^{\delta}\right) \\
& \leqslant \log w(\log w)^{\delta} w^{1 /(1+\delta)}+O\left((\log w)^{1+\delta}\right)=O\left(w^{1 /(1+\delta)}(\log w)^{1+\delta}\right) \\
Q & \leqslant \int_{w^{1 /(1+\delta)}}^{w} \log u\left(\log \frac{w}{u}\right)^{\delta} d u+O\left((\log w)^{1+\delta}\right) \\
& <\log w \int_{w^{1 /(1+\delta)}}^{w}\left(\log \frac{w}{u}\right)^{\delta} d u+O\left((\log w)^{1+\delta}\right)=O(w \log w)
\end{aligned}
$$

Thus it follows that $g(w, t)=O(w \log w)$.
Lemma 2. $g(w, t)=O\left(t^{-1}(\log w)^{1+\delta}\right)$.
Proof. By Abel's lemma, we have

$$
\begin{aligned}
g(w, t) & =\sum_{n \leqslant w} \log n\left(\log \frac{w}{n}\right)^{\delta} \sin n t \\
& \leqslant \frac{A}{t} \sum_{n \leqslant w-1}\left|\Delta\left(\log n\left(\log \frac{w}{n}\right)^{\delta}\right)\right|+O\left(w^{-\delta} t^{-1} \log w\right) \\
& \leqslant \frac{A}{t}\left\{\sum_{n<w^{1 /(1+\delta)}}+\sum_{w^{1 /(+\delta) \leqslant n \leqslant w-1}}\right\}+O\left(t^{-1} w^{-\delta} \log w\right)=O\left(t^{-1}(\log w)^{1+\delta}\right)
\end{aligned}
$$

Lemma 3. $g(w, t)=O\left(t^{-2}(\log w)^{\delta}\right)$.
Proof. By twice use of Abel's lemma, we get $g\left(w,{ }_{-}^{r} t\right)=\sum_{n \leqslant w} \log n\left(\log \frac{w}{n}\right)^{\delta} \sin n t$

$$
=\sum_{n \leqslant w-2} \Delta^{2}\left(\log n\left(\log \frac{w}{n}\right)^{\delta}\right) \sum_{1}^{n} \widetilde{D}_{v}(t)+O\left(t^{-2} w^{-\delta} \log w\right)+O\left(t^{-1} w^{-\delta} \log w\right)
$$

where $\widetilde{D}_{v}(t)$ is the v-th conjugate Dirichlet kernel, and hence

$$
\begin{align*}
& |g(w, t)| \leqslant \frac{A}{t^{2}} \sum_{n \leqslant w-1}\left|\Delta^{2}\left(\log n\left(\log \frac{w}{u}\right)^{\delta}\right)\right|+O\left(t^{-2} w^{-\delta} \log w\right) \tag{5}\\
& \quad=\frac{A}{t^{2}}\left\{\sum_{n<e w^{1 /(1+\delta)}}+\sum_{e w^{1 /(1+\delta) \leqslant n<e^{\delta-1} w}}+\sum_{e^{\delta-1} w \leqslant n \leqslant w-2}\right\}+O\left(t^{-2} w^{-\delta} \log w\right) \\
& \quad=\frac{A}{t^{2}}(P+Q+R)+O\left(t^{-2} w^{-\delta} \log w\right) .
\end{align*}
$$

We have

$$
\begin{equation*}
P=\sum_{n<e w^{11}(1+\delta)}\left|\Delta^{2}\left(\log n\left(\log \frac{w}{n}\right)^{\delta}\right)\right|=O\left((\log w)^{\delta}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
Q=\sum_{e w^{1 /(1+\delta)} \leqslant n<e^{\delta-1} w}\left|\Delta^{2}\left(\log n\left(\log \frac{w}{n}\right)^{\delta}\right)\right|=O\left(w^{-1 /(1+\delta)}(\log w)^{\delta}\right), \tag{7}
\end{equation*}
$$

Hence the desired result follows from (5), (6), (7), and (8).
Lemma 4. $h(w, t)=O\left((\log w)^{2+\delta}\right)$.
Proof. From (4) we get

$$
\begin{aligned}
|h(w, t)| & \leqslant \sum_{n \leqslant w} n^{-1} \log n\left(\log \frac{w}{n}\right)^{\delta} \leqslant \int_{1}^{w} x^{-1} \log x\left(\log \frac{w}{x}\right)^{\delta} d x+O\left(w^{-2} \log w\right) \\
& <\log w \int_{1}^{w}\left(\log \frac{w}{x}\right)^{\delta} x^{-1} d x+0\left(w^{-2} \log w\right)=O\left((\log w)^{2+\delta}\right)
\end{aligned}
$$

Lemma 5. $h(w, t)=O\left(t^{-2}(\log w)^{\delta}\right)$.
Proof. By Abel's lemma, we have

$$
\begin{aligned}
h(w, t)= & \sum_{n \leqslant w} \frac{\log n}{n}\left(\log \frac{w}{n}\right)^{\delta} \sin ^{2} \frac{n t}{2} \\
= & \sum_{n \leqslant w-1} \Delta\left(\frac{\log n}{n}\left(\log \frac{w}{n}\right)^{\delta}\right) \sum_{1}^{n} \sin ^{2} \frac{v t}{2} \\
& +\Delta\left(\frac{\log [w]}{[w]}\left(\log \frac{w}{[w]}\right)^{\delta}\right) \sum_{1}^{[w]} \sin ^{2} \frac{v t}{2}
\end{aligned}
$$

Since

$$
\sum_{v=1}^{n} \sin ^{2} \frac{v t}{2}=\sum_{v=1}^{n} \sin \frac{t}{2} \sum_{\mu=1}^{v} \sin \left(\mu+\frac{1}{2}\right) t
$$

we have

$$
\left|\sum_{v=1}^{n} \sin ^{2} \frac{v t}{2}\right| \leqslant \frac{A}{t^{2}} .
$$

Thus

$$
|h(w, t)| \leqslant \frac{A}{t^{2}} \sum_{n \leqslant w-1}\left|\Delta\left(n^{-1} \log n\left(\log \frac{w}{n}\right)^{\delta}\right)\right|+O\left(t^{-2} w^{-2-\delta} \log w\right)
$$

We have
$\sum_{n \leqslant w-1}\left|\Delta\left(n^{-1} \log n\left(\log \frac{w}{n}\right)^{\delta}\right)\right|=\sum_{n<e}+\sum_{e \leqslant n \leqslant w-1}=O\left((\log w)^{\delta}\right)+O\left(w^{-2-\delta} \log w\right)$.
Hence the desired result follows.
§2.2. We shall now prove the theorem. By integrating by parts twice, we get

$$
\begin{align*}
B_{n}(x) & =\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sin n t d t \tag{9}\\
& =\frac{2}{\pi} \int_{0}^{\pi} \psi_{1}(t) \log \frac{2 \pi}{t}(t \sin n t)^{\prime} d t
\end{align*}
$$

$$
\begin{aligned}
& =-\frac{2}{\pi} \int_{0}^{\pi} d \psi_{1}(t)\left[t \log \frac{2 \pi}{t} \sin n t-n^{-1} \cos n t+n^{-1}\right] \\
& =-\frac{2}{\pi} \int_{0}^{\pi} d \psi_{1}(t)\left[t \log \frac{2 \pi}{t} \sin n t+2 n^{-1} \sin ^{2} \frac{n t}{2}\right]=u_{n}+v_{n}
\end{aligned}
$$

The series $\sum_{1}^{n} u_{n}$ is summable $|R, \log w, 1+\delta|$ if

$$
I_{1}=\int_{e}^{\infty} \frac{(1+\delta) d w}{w(\log w)^{2+\delta}}\left|\sum_{n \leqslant w} \log n\left(\log \frac{w}{n}\right)^{\delta} u_{n}\right|<\infty
$$

Substituting for u_{n} from (9), we have, by (8)

$$
\begin{equation*}
I_{1} \leqslant \frac{2(1+\delta)}{\pi} \int_{0}^{\pi}\left|d \psi_{1}(t)\right| t \log \frac{2 \pi}{t} \int_{e}^{\infty} \frac{d w}{w(\log w)^{2+\delta}}|g(w, t)| . \tag{10}
\end{equation*}
$$

Since $\int_{0}^{\pi} t^{-1}\left|d \psi_{1}(t)\right|$ is finite, it is sufficient to show that

$$
J_{1}=\int_{e}^{\infty} \frac{d w}{w(\log w)^{2+\delta}}|g(w, t)|=O\left(1 / t^{2} \log \frac{2 \pi}{t}\right) \quad \text { for } \quad 0<t<\pi
$$

Let

$$
J_{1}=\int_{e}^{\infty}=\int_{e}^{\frac{2 \pi}{t}\left(\log \frac{2 \pi}{t}\right)}+\int_{\frac{2 \pi}{t}\left(\log \frac{2 \pi}{t}\right)}^{e^{2 \pi / t}}+\int_{82 \pi / t}^{\infty}=J_{11}+J_{12}+J_{13}
$$

By Lemma 1, we have

$$
J_{11}=O\left(\int_{e}^{\frac{2 \pi}{t}\left(\log \frac{2 \pi}{t}\right)} \frac{d w}{(\log w)^{1+\delta}}\right)=O\left(t^{-1}\left(\log \frac{2 \pi}{t}\right)^{-1}\right)
$$

By Lemma 2, we have

$$
J_{12}=O\left(t^{-1} \int_{\frac{2 \pi}{t}\left(\log \frac{2 \pi}{t}\right)}^{e^{2 \pi / t}} \frac{d w}{w \log w}\right)=O\left(t^{-1} \log \frac{2 \pi}{t}\right)
$$

By Lemma 3, we have

$$
J_{13}=O\left(t^{-2} \int_{\epsilon_{2 \pi / t}}^{\infty} \frac{d w}{w(\log w)^{2}}\right)=O\left(t^{-1}\right) .
$$

Hence we get $J_{1}=O\left(t^{-1} \log \frac{2 \pi}{t}\right)=O\left(t^{-2} / \log \frac{2 \pi}{t}\right)$.
It remains to prove that the series $\sum_{1}^{\infty} v_{n}$ is summable $\mid R, \log w$, $1+\delta \mid$. The series $\sum_{1}^{\infty} v_{n}$ is summable $|R, \log w, 1+\delta|$ if

$$
I_{2}=\int_{e}^{\infty} \frac{(1+\delta) d w}{w(\log w)^{2+\delta}}\left|\sum_{n \leqslant w} \log n\left(\log \frac{w}{n}\right)^{\delta} v_{n}\right|<\infty .
$$

Subtituting for v_{n} from (9), we have, by (4),

$$
I_{2} \leqslant \frac{2(1+\delta)}{\pi} \int_{0}^{\pi}\left|d \psi_{1}(t)\right| \int_{e}^{\infty} \frac{d w}{w(\log w)^{2+\delta}}|h(w, t)|
$$

Since $\int_{0}^{\pi} t^{-1}\left|d \psi_{1}(t)\right|$ is finite, it is enough to show that

$$
J_{2}=\int_{e}^{\infty} \frac{d w}{w(\log w)^{2+\delta}}|h(w, t)|=O\left(t^{-1}\right)
$$

Let

$$
J_{2}=\int_{e}^{\infty}=\int_{e}^{e^{2 \pi / t}}+\int_{e^{2 \pi / t}}^{\infty}=J_{21}+J_{22}
$$

By Lemma 4, we have

$$
J_{21}=O\left(\int_{e}^{e^{2 \pi / t}} \frac{d w}{w}\right)=O\left(t^{-1}\right)
$$

By Lemma 5, we have

$$
J_{22}=O\left(t^{-2} \int_{e^{2 \pi / t}}^{\infty} \frac{d w}{w(\log w)^{2}}\right)=O\left(t^{-1}\right)
$$

Hence we get $J_{2}=O\left(t^{-1}\right)$. Thus the proof of the theorem is completed.
The author has great pleasure in taking this opportunity of expressing his warmest thanks to Prof. S. Izumi for his valuable suggestions and guidance.

References

[1] R. Mohanty: On the absolute Riesz summability of a Fourier series and its allied series. Proc. London Math. Soc., 52 (2), 295-320 (1951).
[2] F. Yeh: On the absolute logarithmic summability of the allied series of a Fourier series (Thesis of the Tsing Hua University) (1966).

