188. A Series of Successive Modifications of Peirce's Rule

By Shûrô NAGATA

Mathematical Institute, Nagoya University (Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1966)

After Ono $\lceil 2 \rceil$, we denote by LOS the sentence-logical part of the primitive logic LO [1]. LOS is the logic having \rightarrow (implication) as the only logical constant. We may axiomatize LOS as follows: (1) $p \rightarrow (q \rightarrow p),$ (2) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)),$ with substitution and detachment (modus ponens) as the only rules of inference. (p, q, r are three distinct proposition-variables.) Next, we denote by LOQS a logic obtained from LOS by adding (3) $((p \rightarrow q) \rightarrow p) \rightarrow p$, (Peirce's rule [3]), to the axioms of LOS. We can easily see that Peirce's rule is not provable in LOS. Hence, LOS is weaker than LOQS. (Notation: LOS CLOQS.)

On the advice of Prof. K. Ono, we studied the following problem: "Does there exist a logic L such that $LOS \subset L \subset LOQS$?" This problem has been solved in the affirmative. Namely, we have recognized the fact that we can obtain a series of successive modifications of Peirce's rule, by substituting the foregoing modified Peirce's rule in place of q in the proposition (3) (Peirce's rule) over and over again renewing p each time. The purpose of the present paper is to introduce a method for weakening Peirce's rule and to give a series of successive modifications of Peirce's rule. The author would wish to express his thanks to Prof. K. Ono for his kind guidance and encouragement.

§ 1. To begin with, we explain a first step of the abovementioned method. In order to prove that the proposition (3) is not provable in LOS, we usually make use of the matrix¹ $N = \langle \{0, 1, 2\}, \{0\}, \rightarrow_N \rangle$, where

 $a \rightarrow w b = \begin{cases} b & \text{if } a < b, \\ 0 & \text{otherwise.} \end{cases}$

Namely, the propositions (1) and (2) are satisfied by N, but (3) is not satisfied by N. (Here, a proposition P is said to be satisfied by N if and only if P takes the value 0 identically with respect to N.) In fact, we can easily see the following:

¹⁾ As for matrices, see Rose [4] for example.

$$((a \rightarrow_N b) \rightarrow_N a) \rightarrow_N a = \begin{cases} 1 & \text{if } a = 1 \text{ and } b = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Hence, (3) receives the value 1 if we assign the value 1 to p, the value 2 to q. Moreover, it is remarkable that Peirce's rule never takes the value 2 and that it is necessary to assign the value 2 to q in order that (3) should receive the value 1.

Now, let us consider the following proposition (3^*) obtained from (3) (Peirce's rule) by substituting a proposition, $((p^* \rightarrow q) \rightarrow p^*) \rightarrow p^*$ (also Peirce's rule), for q in (3):

$$(3^*) \qquad \qquad ((p \rightarrow [((p^* \rightarrow q) \rightarrow p^*) \rightarrow p^*]) \rightarrow p) \rightarrow p.$$

 $(p, p^*, q \text{ are three distinct proposition-variables.})$ From the remark above described, we can conclude that (3^*) is satisfied by N. Furthermore, we can prove that (3^*) is not provable in LOS by the use of the matrix $N^* = \langle \{0, 1, 2, 3\}, \{0\}, \rightarrow_{N^*} \rangle$, where

$$a \rightarrow N^* b = \begin{cases} b & \text{if } a < b, \\ 0 & \text{otherwise} \end{cases}$$

(It is easy to check that (1) and (2) are satisfied by N^* , whereas (3^*) is not satisfied by N^* .) Therefore, we can assert that (3^*) is a really restricted rule of Peirce's rule.

§ 2. By extending the method described in 1, we can weaken Peirce's rule successively. Let us consider a series of propositions P_1, P_2, \cdots defined recursively as follows:

$$\begin{cases} P_1 \equiv ((p \rightarrow q) \rightarrow p) \rightarrow p, \\ P_{n+1} \equiv ((p_n \rightarrow P_n) \rightarrow p_n) \rightarrow p_n, (n = 1, 2, \cdots), \end{cases}$$

where p, q, p_n 's are *mutually distinct*²⁾ proposition-variables. We denote by $LOS[P_n]$ a new logic obtained from LOS by adding P_n to the axioms of LOS. P_1 is Peirce's rule, so $LOS[P_1]$ coincides with LOQS. (Notation: $LOS[P_1] = LOQS$.) It is clear that, for any $n \ge 1$, P_{n+1} is provable in LOS[P_n].

Now, we would like to show that, for any $n \ge 1$, P_n is not provable in $LOS[P_{n+1}]$. For this purpose, we use the matrices $M_n = \langle \{0, 1, \dots, n\}, \{0\}, \to_{M_n} \rangle$, where $n = 1, 2, \dots$, and

$$b_{M_n} b = \begin{cases} b & \text{if } a < b, \\ 0 & \text{otherwise} \end{cases}$$

$$a \rightarrow_{\mathfrak{M}_n} b = \begin{cases} 0 & \text{if } a < 0; \\ 0 & \text{otherwise.} \end{cases}$$

($M_{\scriptscriptstyle 1}$ corresponds to the ordinary two-valued truth-table, and $M_{\scriptscriptstyle 2},\,M_{\scriptscriptstyle 3}$ accord with N, N^* , respectively.)

It is easy to check the following.

Lemma 1. For any $n \ge 1$, (1) and (2) (axioms of LOS) are satisfied by M_n .

The following lemma is also proved easily by mathematical

²⁾ This restriction is really necessary since P_n turns out to be provable in LOS unless the variables p, q, p_n's are mutually distinct.

induction.

Lemma 2. For any $n \ge 1$, P_n is satisfied by M_n .

From these lemmas and the fact that, for any $n \ge 1$, a proposition Q is satisfied by M_n whenever two propositions P and $P \rightarrow Q$ are satisfied by M_n , we have the following.

Lemma 3. For any $n \ge 1$, every provable proposition in $LOS[P_n]$ is satisfied by M_n .

As stated in §1, P_1 is not satisfied by M_2 , and P_2 is not satisfied by M_3 . More generally, the following holds.

Lemma 4. For any $n \ge 1$, P_n is not satisfied by M_{n+1} .

From Lemmas 3 and 4, we have the following.

Lemma 5. For any $n \ge 1$, P_n is not provable in $LOS[P_{n+1}]$.

By virtue of Lemma 5 and the fact that, for any $n \ge 1$, P_{n+1} is provable in LOS[P_n], we can establish the following theorem.

Theorem. $LOS \subset \cdots \subset LOS[P_n] \subset \cdots \subset LOS[P_2] \subset LOS[P_1] = LOQS.$

References

- Ono, K.: On universal character of the primitive logic. Nagoya Math. J., 27, 331-353 (1966).
- [2] ——: A pursuit of simple basic system. Ann. Japan Assoc. Phil. Sci., 3, 6-11 (1966).
- [3] Peirce, C. S.: On the algebra of logic. A contribution to the philosophy of notation. Amer. J. Math., 7, 180-202 (1885).
- [4] Rose, G. F.: Propositional calculus and realizability. Trans. Amer. Math. Soc., 75, 1-19 (1953).

No. 8]