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1. Introduction. Let X be a topological space and {A4,} a
locally finite closed covering of X. As is well known, if each
subspace A, has one of the following properties, then the whole
space X has also the same property (see, for instance, K. Morita
[4] and J. Nagata [8]):

(a) being a normal space, (b) being countably paracompact,
(e) being collectionwise normal, (d) being perfectly normal,

(e) being paracompact and normal, (f) being metrizable.

Recently, K. Morita [7] has introduced the notion of M-spaces. He
calls a topological space X an M-space if there exists a normal
sequence {1,|n=1,2, ...} of open coverings of X satisfying the
condition (*) below:

(*) If a family & consisting of a countable number of subsets
of X has the finite intersection property and containing as
its member a subset of St(x,, U,) for each n and for some
fixed point x, in X, then N{K|KeR}#2.

In this note, we shall establish an analogous result for the notion
of M-spaces; namely, we shall prove the following theorem:

Theorem 1. Let {A,} be a locally finite covering of a
Hausdorff space X and each A, be a closed Gs-subset of X. If
each A, is a normal M-space with respect to its relative topology,
then the whole space X is also a mormal M-space.

The next §2 is devoted to the proof of this theorem, and in §3
we shall deduce some of its immediate consequences., Most
terminologies and notations used in this note are the same as those
of J. W. Tukey [12].

Finally, I wish to express my hearty thanks to Prof. K. Morita
who has given me many kindful suggestions and advices.

2. Proof of Theorem 1. Our proof of Theorem 1 rests upon
the following two lemmas.

Lemma 1. Let {&,|n=1,2, ...} be a normal sequence of open
coverings of a topological space X. Then there is another normal
sequence {9,|n=1,2, ..} of open coverings of X having the prop-
erties:

(i) Each 9, is a refinement of ®,.
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(ii) FEach 9, s locally finite.

Lemma 2. Let {F,|acQ} be a family of closed subsets in a
space X and for each ae R, let &, be a locally finite family of
open subsets in X such that F,cCH,, where H,=U{G|Ge®,}.
Denote by ®, the open covering of X consisting of the set X—F,
and the sets in ®,. If the family {H,|aeQ} is locally finite,
g?en the family /\{@Aae!)}” is a locally finite open covering of

Lemma 1 is an easy consequence of Theorem 1.2 in [5] and the
proof of Lemma 2 is similar to that of Theorem 1.2 in [3].

Now we proceed to prove Theorem 1. Let {A,|aec 2} be a
locally finite closed covering of a Hausdorff space X and suppose
that each A, is a normal M-space with respect to its relative topology.
According to a result of A, Okuyama [10], each A, is collectionwise
normal and countably paracompact, and hence the whole space X is
also collectionwise normal and countably paracompact (see K. Morita
[4]). Consequently, from a theorem of M, Katétov [2] we see that
there exists a locally finite open family {H,|a e 2} of open subsets
of X such that H,D>A, for each aec® (see also V. Sediva [117.
Considering the Gs-property of A,, we can find a countable family
{G®|n=1,2, ...} of open subsets of X such that ﬁlG;‘”:Aa and
that G c H, and G®,CcGY for each n. "

Since each A, is an M-space, there exists a normal sequence
U»|n=1,2, ---} of open coverings of the subspace A, satisfying
the condition (*) with respect to the subspace A,. Moreover, we
can assume that each covering ™ is locally finite in A, by Lemma
1. Applying a theorem of C. H. Dowker [1] to this covering, we
obtain a locally finite open covering M. of X such that M N A2
is a refinement of U™, Denote by 5)%;“) the open covering of the
space X formed by X— A, and the sets of the form G N M, where
Me WM, and construct the covering
(1) AT | e =R, (n=1,2,---).
Then we see from Lemma 2 that R, is a locally finite open covering
of the space X.

Now we shall construct by induction a normal sequence {8,} of
open coverings of X in the following way. First, we put B,=N,.
Let n»>1 and suppose that the locally finite open coverings B,(¢=1, 2,
.-+, n—1) have been defined in such a way that (i) L, is a refinement
of M,;, and (ii) B, is a star-refinement of B, ;. Since B,_, is a locally
finite open covering of the normal space X, it has a locally finite open

1) As to this notation, see J. W. Tukey [12].
2) Here M N Ax means a family {Mn A«| MeM™}.
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star-refinement P,. Let N, AL,=2L,. Then the above relations (i)
and (ii) are also valid for ¢=n.

This sequence {8B,} is obviously a normal sequence of open
coverings of X, It remains to prove that the sequence {8,} satisfies
the M-space condition (*). To prove this, let ={K,|n=1,2, ...}
be any family consisting of a countable number of subsets of X
having the finite intersection property and suppose that & contains
as its member a subset K, of St(x,, B;) for every ¢ and for some
fixed point ®, of X. We have to show N{K|KeR}#®. Let
Adx)={axe2|x,e H,} and 4,(x)={ae 2|x,€ A,}. Then the index-sets
A(x,) and 4y (x,) are finite subsets of 2 by virtue of local finiteness
of the family {H,|ae 2}, and the set 4y(x,) is contained in 4(z,).

First, we shall prove that for every ¢ we have:

(2) St(@o, Bi) CSH(w,, Ni) T U{A. | € 4(w,)}.

Indeed, let N be any member of R; containing the point x,. The

set N has the form

(3) N={X-A.lae2}n(N{G"NU,|ae ),

where U, is some set belonging to M, and 2, and 2, are disjoint

subsets of 2 such that Q,UR,=2. If £ is any index not contained

in 4(xz,), then 8 must be contained in 2,, whence we have NC X— A,.

Since this relation holds for any 8¢ 4(x,), it follows that
NcN{X—4p| 8¢ d(w)=X— U{4s| B ¢ d(w)} C U{A. | @ € A(x,)}.

Hence the relation (2) is proved.

Next, we shall show that there is some integer %, such that
1=1, implies
(4) St(xy, B:) T U{A4. | a e dy(x,)}.

Indeed, in case 4(x,) = 4,(x,), we have only to choose 7,=1. Otherwise,
we choose any B e 4(x,) —4((x,). Then x,¢ Ag and hence x,¢ G/® for
some 1=1(8)., Therefore, for any j=14(8), we have

St(s, B,) C St(2, Bu) CSt(ms, Tifh) = X— 4.
Consequently, if we choose %,=Max {i(B)|B e 4(x,)— 4,(x,)}, we see
that the relation (4) is valid for this 4,.

Finally, we shall prove that the family &N A,, has the finite
intersection property for some «,e 4(x,). Let us assume the
contrary. Then for each a e 4(x,), we can find a finite set /", of
natural numbers such that N{K,NA.|iel}J=@. Let I
=U{l.|ae d(x,)}. Then we have from (4),

K, N(N{K;[ie =K, N(N{A.|lae d(x)h) N(N{K:|iel})

=K,,n[_N_(An(NE)=2.

a€dy(zg)
This contradicts the finite intersection property of the family R.
Hence, for some «,€ 4,(x,), the family 8N A, has the finite inter-
section property, and furthermore, for every i=1, we have
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K, N A, Sy, B;) N Ay ©SH2o, W) N Ay
S, V) N Ay ©St(o, P N A,
Sz, i),
because wx,€ A,. Since the subspace A, is an M-space, we have
MKNA,NA, | Ke R+,
whence we infer that N{K|Ke & # 2. Thus, the proof of Theorem
1 is completed.

The problem whether Theorem 1 is valid without the G;-condi-
tion of A, remains open,

3. Some applications. Finally, we shall deduce some results
from Theorem 1.

Theorem 2. Let X be a paracompact Hausdorfl space which
18 locally am M-space, t.e., each point & in X has a meighborhood
U, such that U, is an M-space. Then the space X itself is am
M-space.

Proof. By paracompactness of the space X, the open covering
{Int U,|x € X} has a locally finite open refinement {G, | @ € 2}, which
also has an open refinement {H,|ac 2} such that G,DH, for each
aec Q. By normality of the space X, we can find closed Gs-subsets
A, such that H,cA,cG, for each a. Then each A, is a closed
subspace of some M-space U, and hence is an M-space and moreover,
a normal space. Thus, the theorem follows from the above Theorem 1.

Theorem 3. Let {G,} be a o-locally finite covering of a normal
Housdorff space X and suppose that each G, ts an open F,-subset
of X. If each G, is an M-space, then so also is X,

Proof., According to K. Morita [7, Theorem 1.27, {G,} is a
normal covering of X and hence has a locally finite refinement.
Therefore, by the similar method as above, we can find a locally
finite refinement {F},} of {G,} such that each F} is a closed G;-subset
of X. Thus, the theorem is an immediate consequence of Theorem 1.

Theorem 4 (J. Nagata and Yu. Smirnov). Let {A,} be a locally
finite closed covering of a topological space X. If each A, is
metrizable, then so also is X.

Proof. Since each A, is paracompact and perfectly normal,
from [4] we see that X is also paracompact and perfectly normal.
Consequently, X is an M-space by Theorem 1. On the other hand,
the product space Xx X is perfectly normal because it is a union
of the locally finite family of metrizable and hence perfectly normal
subspaces A, %X Ag. Applying A. Okuyama’s metrization theorem [97],
we conclude that X is metrizable.

Theorem 5. Let {A,|n=1,2,---} be a countable family of
closed subsets of a space X having the property:
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**) U{Int4,|n=1,2, ..-}=X.
If each A, is a mormal M-space, then so also is X.
Proof. Let C,=A, and C,=A,— U Int A, for n>1. It is clear

that {C,|n=1,2,+--} is a locally finite closed covering of X and
that each C, is a normal M-space and hence a countably paracompact
space (see [7]). Therefore X is also countably paracompact and
normal (cf. [47]) and consequently, we can find a locally finite family
{D,} such that C,cD,cInt A, and each D, is a closed G;-subset of
X. Thus this theorem also follows from Theorem 1.

If we drop the condition (**) in Theorem 5, the theorem fails
to hold. There exists a non-M-space which is a countable union of
closed M-subspaces; for instance, any non-metrizable CW-complex is
such a space (see Morita [6]).

Corollary 1. If, in the above Theorem 5, each A, is metrizable,
then so also is the space X.

The proof is similar to the above; we use Theorem 4 instead
of Theorem 1.

Corollary 2. Let A be an open F,-subset of a mormal
Hausdorff M-space X. Then A is also a normal M-space.

Proof. Let A=UF,, where each A4, is a closed subset of X.
Then we can easily ﬁ%d closed subsets C, in such a way that

F.clntC,cC,cA.
From this we have A= IntC,, and the theorem follows from

Theorem 5.
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