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221. On Branching Semi-Groups. I

By Nobuyuki IKEDA, Masao NAGASAWA,
and Shinzo WATANABE
Osaka University, Tokyo Institute of Technology, and Kyoto University*)

(Comm. by Kinjiré KUNUGI, M.J.A., Nov. 12, 1966)

In the previous papers we have given a definition of branching
Markov processes (abbreviated as B.M.P.) [1], discussed some
fundamental equations of B.M.P. [2], and constructed B.M.P. in a
probabilistic way [8], [4]. This paper is a continuation of these
papers and is devoted to an analytic construction of B.M.P, We
shall treat this problem, however, in a little wider setup which may
permit us to deal with the not necessarily positive branching semi-
groups. (c.f. [5]).

1. Definition of branching semi-groups. Let S be a compact
Hausdorff space with countable base, S® be the n-fold symmetric

product of S (S°={0}, an isolated point), and S= US”U{A} be the

one-point compactification of US”.” We denote by C(S) (resp. C(S)
and C(S™)) the space of bounded continuous functions on S (resp. on
S and S*). B(S) is the space of bounded Borel measurable functions
on S. C«S) (resp. By(S)) is the subspace of C(S) (resp. B(S)) the
elements of which vanish at infinity 4.

Definition 1.1. A contraction® semi-group {T,; t=0} of linear
operators on C(S) (or B(S)) is said to be a branching semi-group
(or of branching property), if it satisfies

“ T~
(1.1) _ T f(x)=(T:fls(x), xe87
for any feC*(S) (or B*(S)).*
Remark. Let B be a Banach space or Hilbert space, B™
~B®B® - ® B be the n-fold symmetric direct product of B, and

B= E@B” (B° {constants}) be the direct sum of B". Then the

notlon of branching semi-groups can be extended to a semi-group of
linear operators on 3.

*) The authors’ present addresses: Stanford Univ., Cornell Univ., and Univ.
of Washington.

1) For precise definition of S, we refer to [1].

2) i.e.||T:|]|<1. We do not assume positivity of T%.

3) For feBx(S), we put f(x)— 1'[ f(x,) if e S», =0 if x=4, and =1 if x=0

4) C*(S) (B¥S)={f; f is bounded continuous (resp. Borel measurable) w1th
[IF£11<1}. CX(S) (B*(S)) is the uniform closure of C*(S) (B*(S)).
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2. M-equation. We assume that we are given a system
{T?, K(t), pt} of quantities satisfying the following conditions:

[P. 1] There is a kernel® T°(¢t, z,dy) on [0, 0)xSxS, and if
we put

2.1) Bf(x):SST"(t, z, dy)f@), for xS and fe C(S),

then T is a strongly continuous contraction semi-group of linear
operators on C(S).

[P. 2] There is a kernel® K(x,dr,dy) on Sx[0, c0)xS, and
if we put
2.2) K(t)f(x):S:LK(x, dr, dy)fy), for zeS and fe C(S),
then K(t) is a bounded linear operator on C(S). Moreover T? and
K(t) have the following relations; for any s and ¢=0,
(2.3) TK(s)f(x)=K({+s)f(®), web,
and if we denote the total variations of T°(¢, x, dy) and K(¢t, dr, dy)
by | T°|(t, =, dy) and | K |(x, dr, dy), respectively, they satisfy

2.4) |T°|(t, = S)—|T°|(s, «, S)—i—Stl K |(x, dr, S)<0, for s<t, and
(2.5) lim sup | K |(#, [0, t], S)=0.

tl0 z€S

[P. 3] There are kernels ¢,(x, dy) on SxS", n=0,1,2,+++, + 00,
and if we put

@6  mlfI@=| me, d)fw), veS and feC(s),
then g, is a bounded linear operator from C(S™) to C(S) and satisfies
(@.7) PIPAICHDESH

Where convergence is uniform in x.

By virtue of Lemma 2.2 of [2], we have

Lemma 2.1. There exist unique kernels T'(t, x,dy) and
U(t, x,dy) on [0, 0] X SXS such that:
1% If xeS*, T%t, x,.) is concentrated on S*, and if we put for
fe (S

(2.8) Tof@)=| Tt x, dy)fw), xes,

then T? is a strongly continuous semi-group on C(S*) and satisfies
RS N
of(@)=Tif(x), for feC(S), xeS", n=1,2,---,

5) For fixed z€ S and t=0, T°¢, x,.) is a signed measure on S with bounded
total variation, and for any fixed Borel set BcS, T%., ., B) is Borel measurable
on [0, ©)XS.

6) For fixed €S, K(x, .,.) is a signed measure on [0, »)XS with bounded
total variation, and for a fixed Borel set BixXB: of [0, )X S, K(., Bi, Bz) is Borel
measurable on S.

7 S°={3} and S~={4}.




1018 N. IKEDA, M, NAGASAWA, and S. WATANABE [Vol. 42,

(2.9) Tif©@)=f00),  for fe (S,
Tif()=f), for feC{4},

and

(2.10) | T?| (¢, x, S"<1, if xeS"

2% If we put

(2.11) y()f(x)= SSW(t, x, dnfly), feC(S), xes,

then T(t) is a bounded linear operator from C(S) to C(S*) and
satisfies

t A
@12 FO=| <1 s
where fe C*(S).

3 Let |T|(t, x,dy) be the total variation of ¥, then ¥ |(-, x, S)
18 of bounded variation as a function of t, and it holds that

[ KC, ar, a3, m[Flw)>@)0 xes,

(2-13) lwl(tﬂ X, S)él'—lTol(t’ X, S)y xeS’
and
(2.14) lilm sup | 7| (¢, x, S)=0, 7 =0,
tl0 xes”
4% T? and ¥(t) are related, for fe Cy\S), as
(2.15) TR (x)=T($) f(x)+ Tt —s)f(x), xe S, s=t.

Definition 2.1. Let T? and ¥ be those given in Lemma 2.1.
Consider an equation on S, for fe B(S),
218  w@=To0+ || ¥@r, % @), xes,
and we call it M-equation corresponding to {77, K, t,}. If wu(x)
satisfies M-equation for fe Cy(S) then
2.17) ltif{)l U (x) =f(x), xeS,

and w, is called the solution of M-equation with the initial value f.

3. The minimal solution of M-equation. Now we construct
a solution of M-equation, The procedure adopted by Moyal in [6]
is applicable for our case. Namely, if we put for x € S,t{=0, and
feByS)

TO(E)f(x)=1(x), TO)f(x) =T (¢)f(x), and
®.1) {T(”’(t)f(x)=StW‘”“”(dr)W(t—r)f(x), for n=22
and put 0

T f(x)=Tif(x),
8.2) {Tt‘”’f(x)=S:'F(”’(dv)Téi’,f(x), for n=1,

then we have

8) For f€B*S) and g€ B(S), we put <f/y>(x)=k§?.lg(xx) ,gkf(xj) if xeS», and
= J
=0 if x=2 or 4.
9) For convenience, we write ¥'(dt)f(x) rather than d¥(¢)f(x).
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Lemma 3.1. T and ¥™(t) satisfy for xe S and fe By(S)
B8 TUOf0=TrE@T -, for k=0,1,2, -,
0

G4 T ={TeITEAE), for B=0,1,2,.0,m,

(3.5) TO T, f(x) = S:'F(ds) T v f(x),

(3.6)  TOOf)=T D)+ TP -)fx),  nzl.
Lemma 3.2. For any fec B(S),

3.7 ST f(x)

converges absolutely when N tends to imfinity.

Lemma 3.3. There exists a kernel T(t, x, dy) on [0, 0)x SX S
such that

(t) if we put

(3.8) T.f)=| T, x, dy)fw), for feB(S),
then it holds that

(3.9) th(x)zéo T™f(x), and

(3.10) NEAESY

(¢0) T, x,dy) satisfies Chapman-Kolmogorov’s equation.

(@) If we put u(x)=T,f(x) for feC(S), then u, is a solution
of M-equation with the initial value f and it satisfies

(3.11) 1}?{} | To.f—f1]=0.

Lemma 3.4. The semi-group T, defined by (3.8) is a branching
Semi-group.

Proof of this lemma heavily leans upon the results of [17.
Combining the above lemmas, we have

Theorem 3.1. Let {T?, K(t), p.} satisfying [P. 1], [P. 2], and
[P. 8] be given, then there exists a kernel T(t, x,dy) on [0, c0)x SX S,
and if we define T, by (3.8), it satisfies:
(%) T, s a branching semi-group on B,(S) satisfying (3.9) and
(3.10).
(i) T, is strongly continuous at t=0, for fe C«S).
(2%7) wux)=T,f(x) is a solution of M-equation corresponding to
{T?, K(t), pt.} with the initial value f, provided that fe C\(S).
(tw) If T?, K(t) and p, are mon-negative, them T, is also mon-
negative,
(v) If, for any bounded Borel measurable function v(t,x) on
[0, )X S, we have

(3.12) [| xC, dr, aypce—r,m) e cis),
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then, T, is a strongly continuous semi-group on C(S).
Now we give a condition under which the solution of M-equation
becomes unique,

Proposition 3.1. If ¥ satisfies, for any 1T>0,

(3.13) stupsuplT[(t, x,S)<1, for n=1,2, .-,
=T z€8"
then the bounded solution w(t, x) of M-equation with
(3.14) lim sup | u(t, x) |=0
x—d tsT
18 unique.

Corollary. Assume that (3.13) is satisfied. If there exists a
branching semi-group T, satisfying M-equation and if it satisfies
for fe C*(S) and T>0,

sup sup | T, f(x) | <1,
t=T =z€S8
then T, coincides with the semigroup T, obtained in Theorem 2.1.
Remark. If infinf|T°|(¢, «, S)>0, (3.18) is satisfied.

t=T z€S
As a concequence of Theorem 3.1, we are able to construct a

branching Markov process corresponding to a fundamental system
{T?, K, q,, ©,}."0

Remark. Put o.(t, x)=1im ¥™(¢, x, S). Moyal proved in [6]
that the bounded solution of ”ﬁ-equation corresponding to a funda-
mental system is unique if and only if ¢.(c0, x)=0, for every x € S.
The probabilistic meaning of this condition is obvious. For,
000, x)=P,[0<7,<00]. If P,[0Z7.,<oc0o]>0, there may appear
many solutions of M-equation which correspond to “branching Markov
processes with instantaneous return” from some “boundary” of
B.M.P. They may be constructed in the same way as [3] by giving
some “instantaneous distribution”, but their semi-group have no
longer the branching property.

4. S-equation and its relation to M-equation. Given a
system {T7, K(t), ¢t} satisfying [P. 1], [P. 2], and [P. 3], we put,
for fe B*(S)

(4.1) FLfI@=3mlf1@), wes.
Definition 4.1 Consider an equation on S, for fe B*(S),
@2 w@=Tw+ || Ko dr, dFlu @),  es,

t
0
and we call it S-equation corresponding to {77, K(t), t,} and if wu,
satisfies S-equation for fe C*(S) then
lilm u () =f(®),
tl0

and it is called a solution of S-equation with the initial value f.

10) For the definition of fundamental systems we refer to [2].
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At first, we have
Proposition 4.1. If T, is a branching semi-group, and if
u(t, x)="T,f(x) satisfies M-equation for fe C*(S), then
(4.3) u(®)=(T.1) |s (%)
is a solution of S-equation.
Proof is easily performed.
Next we note that a converse of this proposition is valid.
Lemma 4.1, If u,(x) satisfies S-equation
t
w(@)=Tif@)+ | | K@, dr, dFlu.]w), wes,
where fe B*(S), then it holds that
S RS t
@) T =T+ | < Tou,,

gsm-, dr, dy)F [u,_,](y)> (x),

xeS.
By virtue of this lemma, we have
Theorem 4.1. If u,(x) is a solution of S-equation with the
mitial value fe C*(S), then i,(x) is a solution of M-equation with
the initial value f.
Corollary. If for any T>0,
inf inf | T°| (¢, , S)>0,

tsT z€S
then the solution u(t,x) of S-equation for fe C*(S) with sup||u(t,.)||<1
t<T
18 unique.
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