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In [3 GSdel introduced a series of many-valued propositional
systems S, which is widely known and is quite frequently made
use of when propositional systems are treated. And in our paper
6 we introduced two kinds of axiomatization for these S. But
the separation theorem mentioned below does not hold on those
axiomatized systems.

Separation Theorem. A provable formula in the system can
be proved using only the axioms for implication and those for
the logical symbols actually appearing in the formula.

We introduce, in this paper, another axiomatization for S and
prove the separation theorem on them.

1. Preliminaries. Definition 1.1. S is a many-valued
propositional system, whose values ave integers 1, 2,..., n and w
(w is regarded grea$ev han any positive integers), and whose sole
designated value is 1. Logical opera$ions D, A, V, and ave

defined in S as follows:
v v 1 vz

v otherwise,
v v max (v, v.),
vVv min (v, v.),
VV.

An extension of S is LC of Dummett 2, in which values
are defined to be all the positive integers and w.

By SA, we mean that a formula A is provable (or valid) in
the axiomatic system (or model) S. By S+A+... +A, we mean
an axiomatic system obtained by adding the axiom schemes A, ..., A
to an axiomatic system S. If S and S are two systems axiomatic
or defined by a model, we mean by SS. that the set of all provable
or valid formulas of S is included in that of S. And SS means
that SS and SS. If f is an assignment function of a model,
we mean by f(A) the value calculated for the formula A by the
assignment f.

Lemma 1.2. SS S LCLI, where LI is $he

inuitionis$ic system and S coincides with he usual classical
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system.
We omit the proof since the lemma can be easily proved. We

call a system between the classical and the intuitionistic as inter-
mediate.

,2. Former Axiomatizations. Definition 2.1. We define
some formulas as follows:

X= / (a a) A (a a),
l_i<jn+l

R,=a(aa_) (aa)a,
Z= ((a a) a) (((a a) a) a),

where a’s are propositional variables.
Dummett [2 obtained the
Lemma 2.2. LC cLI+Z.
And we proved in [4 and [5 that the separation theorem

holds on LI+ Z.
In [6 is proved the
Lemma 2.. SLI+Z+X++YLI+R.
The separation theorem does not hold on these axiomatizations,

since the newly added axiom schemes X+, Y, and R contain logical
symbols other than the implication.. Separability. A formula is called an I (or C, or D, or N)
formula if it contains only implication (or conjunction, or disjunction,
or negation) as its logical symbols. An IC formula is a formula
in which no logical symbols other than implication and conjunction
are contained. An IC axiom is an axiom which is an IC formula.
An IC theorem is a theorem which is an IC formula and is provable
from IC axioms. An IC proof is a proof in which only IC axioms
are used. A system is IC complete if the theorems which are IC
formulas are IC theorems. Other combinations are defined similarly.
A system is called separable if the separation theorem holds on it.

We proved in [4 the
Lemma .1. If an intermediate propositional system satisfies

the following (1), (2), and (3), it is separable.
(1) The system is constructed by adding some new I axioms

to a separable intuitionistic propositional system.
(2) The system is I complete.
3 There exist I formulas F(a, b) (i=1, ..., k) whose propo-

sitional variables are only a and b such that formulas of the forms
D: a b F(a, b) (i 1, ..., k),
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Do: F(a, b) D (... D (Fk(a, b) aV b) ),
are ID theorems.

The condition (3) can be weakened to (3’) below.
(3’) The formulas D’s and Do are theorems.
Proof. Since aaV b and baV b are intuitionistic theorems,

we get I theorems aF(a, b) and bF(a, b) from the theorem D.
Hence aVbF(a, b) is an ID theorem. And since

aV bD ((aD c) ((bD c) c))
is an intuitionistic theorem, we get an I theorem

Fl(a, b) (... (Fk(a, b) ((aD c) ((b c) c))))
from Do. Here we put c to be aVb, and from aaVbandbaVb
we get the ID theorem Do.

An example of the separable intuitionistic system is the system
of Kleene 7. And hereafter we mean by LI the intuitionistic
system of Kleene or some other separable ones.

4. LP. Recently Nagata 8 defined a sequence of formulas
P and systems LP as follows:

Definition 4.1.
P=((aao)a)a.
P=((aDP_l)a)a.
LP=LI+P.

One of his results concerning this sequence is the
Lemma 4.2. SDLP, but not S+LP; and

ScLPLP LPD LL
Now we prove two lemmas concerning P.
Lemma 4.3. Not LP,S, if n>=2.
Proof. Let M be a 5-valued system as follows:

1
2
3
4

12340)

1234o) 1
1184o) 2
11144 3
11313 4
11111 0)

1234o)

1234o)
22340)

8880) 0)

4404o)

0) 0)0)0)0)

V

i
2
3
4

1234o)

iiiii
12222
12323
12244
1234o)

i 0)

2 0)

3 4
4 3
o) 1
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the value i is the designated value. Then it is easily seen that
MLI. M-Z is not true since

((3 4) 2) (((4 8) 2) 2) 2.
P:/:I if and only if a-2 and a0-3, 4, or o), and then P-2. Hence
if n_>_2, P:/:I if and only if a-2 and P_-3, 4, or w. But P_
only gets the value 1 or 2, if n>=2. Hence LPS dose not hold
if n>=2.

Lemma 4.4. LC/P-R.Proof. Let Q. be a formula obtained from P by substituting
a0 by a a. Let f be an assignment function of LC assigning
values v, ..., v to propositional variables a, ..., a.. Then f(Q,)
=f(R) holds since f(Q) and f(R)are not i if and only if
lvv_...vw and on that occasion they both gets the
value v.. 5. New Axiomatization. Definition 5.1. MP,-LC+P,
(that is, MP-LI/Z/P-LP/Z).

By 4.3, LP does not give an axiomatization for S. But by 4.4,
MPS. And by 4.2, SP, hence SMP. So we have the

Theorem 5.2. S MP.
This MP is another axiomatization for S. And the main purpose

of this paper is to prove that the separation theorem holds on this

MP if we take for LI a separable intuitionistic system such as
that of Kleene 7.

Since we have the lemma 3.1, we only need to prove that MP,
satisfies the three conditions of 3.1. But the added axioms to LI
are all I axioms, so (1) is satisfied. And

aVb((ab)b), aVb((ba)a),
and ((ab)b)(((ba)a)aVb) are (ID) theorems of LC, hence
they are (ID)theorems of MP and (3) is satisfied. So we only
need to prove that MP is I complete. Before we prove that, we
must make some preparations.

An assignment function f is almost always considered with rela-
tion to some formulas, in other words, to a set of some propositional
variables {a, ..., a}. Let v be the value assigned to a by f
(li__<m). By V(f), we mean the set {v,...,%}, and by M(i)
the i-th maximum value of V(f) (we omit the subscript f if there
occurs no confusion), and by H(f) the number of different values
in V(f), and by f an assignment function which assigns to a the
value i if f(.a)<=k and the value f(a) otherwise.

Lemma 5.3. If A is an I formula and S-A and if f is
an assignment function of LC such that H(f)n, or H(f)-n/
and V(f 1, then f(A) 1.
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Proof. The operation depends only on the relation >__
between the values, and vv does not get a value other than 1
or vo. So the calculation of f(A) just goes as in S under the
condition of the lemma.

Theorem 5.4. (I completeness.) If A is an I formula and
SA, then A is provable in MP by using only I axioms.

Proof. Let b,..., b be all the propositional variables appear-
ing in the formula A. We assume, without loss of generality, that
k>=n/l since if not, we can take as A the I formula

(bk+lbk+l)D(... D((b+IDb+I)A)...)
which is equivalent to A. Let p be a mapping function of {a0, ..., a}
into {b, ..., b}. Then we define P* to be the conjunction

/ P(p(a0),..., p(a)),
all

where P(p(a0), ..., p(a)) means the formula obtained by substituting
a by p(a) in P (0 __< i __< n). Now let f be an assignment function of
LC. We prove that f(P* A) 1.

If H(f) <= n, or if H(f) n/ 1 and V(f) 1, then f(A) 1 by 5.3.
If H(f)-n/l and V(f)l, or H(f)>n/l,f(P*)-M(n/l)

since f(P)=/:l if and only if lvv_ Vo and on that
occasion f(P)-v. Hence f(P*A)-f,I+)(A)-I since H(fl+))
n/ 1 and V(f+) i.

Since (B/ /BC) =-(B(B. (BC) ...) is a
theorem in LC, P*A can be transformed to an equivalent I
formula of the form Q(Q (QA) ...), where each Q
is a substituted form of P. And this transformed formula is
provable in LC. By the I completeness of LC (cf. 1 or 5),
it is provable by using only I axioms. On the other hand, each Q
is provable in MP by using the I axiom P. Hence by the modus
ponens, A is proved by I axioms only.

By this proof of I completeness of MP, the separation theorem
is proved on MP.
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