9. An Algebraic Formulation of K-N Propositional Calculus. II

By Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1967)

In his paper [1], K. Iséki has defined K-N algebra as follows: Let X be an abstract algebra consisting of $0, p, q, \dots$, with a binary operation * and a unary operation \sim satisfying the following conditions:

a)
$$\sim (p*p)*p=0$$
,

b)
$$\sim p * (q * p) = 0$$
,

c) $\sim \sim (\sim \sim (p * r) * \sim (r * q)) * \sim (\sim q * p) = 0$,

d) $\sim \sim \beta * \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$, where α, β are expressions in X.

In this paper, we shall show that the NK-algebra is characterized by the following conditions:

1)
$$\sim (p*p)*p=0$$
,

2) $\sim q * (q * p) = 0$,

3) $\sim \sim (\sim \sim (p * r) * \sim (r * q)) * \sim (\sim q * p) = 0$,

4) $\sim \sim \beta \ast \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$, where α, β are expressions (For the details on *N-K* propositional calculus, see [2], [3], [4].)

K. Iséki has proved that the NK-algebra implies $\sim q * (q * p) = 0$. Therefore we shall prove that 1), 2), 3), and 4) imply b).

A) $\sim \alpha * \beta = 0$ implies $\sim \sim (\beta * \gamma) * \sim (\gamma * \alpha) = 0$.

Proof. In 3), put $p=\beta$, $q=\alpha$, $r=\gamma$, then by 4) we have A). Then we have

B) $\sim \alpha * \beta = 0, \sim \gamma * \alpha = 0$ imply $\beta * \sim \gamma = 0.$

In A), put $\alpha = p * p$, $\beta = p$, $\gamma = \sim p$, then $\sim (p * p) * p = 0$ implies $\sim \sim (p * \sim p) * \sim (\sim p * (p * p)) = 0$.

By 2), we have

5) $p*\sim p=0.$

In 3), put $p = \sim \sim q$, $r = \sim r$, then $\sim \sim (\sim \sim (\sim \sim q * \sim r) * \sim (\sim r * q)) * \sim (\sim q * \sim \sim q) = 0$. And In 3), put $p = \sim \sim q$, then $\sim \sim (\sim \sim (\sim \sim q * r) * \sim (r * q)) * \sim (\sim q * \sim \sim q) = 0$.

By 5), $\sim q * \sim \sim q = 0$, hence we have

$$6_1) \sim \sim (\sim \sim q \ast \sim r) \ast \sim (\sim r \ast q) = 0,$$

and

 $6_2) \sim \sim (\sim \sim q * r) * \sim (r * q) = 0.$

```
[Vol. 43,
```

These expressions mean C) $\alpha * \beta = 0$ implies $\sim \sim \beta * \alpha = 0$ and $\sim \sim \alpha * \sim \sim \beta = 0$. In 6_2 , put $r=p, q=\sim \sim p$, then $\sim \sim (\sim \sim \sim p * p) * \sim (p * \sim p) = 0.$ By 5), we have 7) $\sim \sim \sim \sim p * p = 0.$ In 3), put $p = \sim \beta$, $q = \sim \alpha$, $r = \alpha$. $\sim \sim (\sim \sim (\sim \beta * \alpha) * \sim (\alpha * \sim \alpha)) * \sim (\sim \sim \alpha * \sim \beta) = 0.$ By 5), $\alpha * \sim \alpha = 0$, hence we have D) $\sim \sim \alpha * \sim \beta = 0$ implies $\sim \beta * \alpha = 0$. In 3), put $p = \alpha$, $q = \beta$, $r = \gamma$, then $\sim \sim (\sim \sim (\alpha * \gamma) * (\gamma * \beta)) * \sim (\sim \beta * \alpha) = 0.$ And by D) $\sim \sim (\alpha * \gamma) * \sim (\gamma * \beta) = 0$ implies $\sim (\gamma * \beta) * (\alpha * \gamma) = 0$. Therefore, let $\sim \beta * \alpha = 0$, then we have E) $\sim \beta * \alpha = 0$ implies $\sim (\gamma * \beta) * (\alpha * \gamma) = 0$. From E), we have the following variations: $\sim \alpha * \beta = 0$ implies $\sim (\delta * \alpha) * (\beta * \delta) = 0$, $\sim \gamma * \delta = 0$ implies $\sim (\alpha * \gamma) * (\delta * \alpha) = 0$. By B) and the above variations, we have F) $\sim \alpha * \beta = 0$, $\sim \gamma * \delta = 0$ imply $(\beta * \delta) * \sim (\alpha * \gamma) = 0$. In E), put $\alpha = \sim \sim p, \beta = p, \gamma = r$, then $\sim p \ast \sim \sim p$ implies $\sim (r \ast p) \ast (\sim \sim p \ast r) = 0$. By 5), $\sim p * \sim \sim p = 0$, hence we have 8) $\sim (r * p) * (\sim \sim p * r) = 0.$ In 7), $p = -\alpha$, then $-\alpha - \alpha + \alpha = 0$. Therefore, let $\alpha = 0$, then we have $\sim \sim = 0$, that is, G) $\alpha = 0$ implies $\sim \sim \alpha = 0$. In G), put $\alpha = \sim \gamma * \beta$, then we have (1) $\sim \gamma * \beta = 0$ implies $\sim \sim (\sim \gamma * \beta) = 0$. In 6_1 , put $r = \delta$, $q = \gamma$, then we have (2) $\sim \sim (\sim \sim \gamma * \sim \delta) * \sim (\sim \delta * \gamma) = 0$ implies $\sim \sim \gamma * \sim \delta = 0$. In F), put $\alpha = \sim \gamma, \beta = \sim \delta, \gamma = \beta, \delta = \alpha$, then (3) $\sim \sim \gamma * \sim \delta = 0$, $\sim \beta * \alpha = 0$ imply $(\sim \delta * \alpha) * \sim (\sim \gamma * \beta) = 0$. In C), put $\alpha = \sim \delta * \alpha$, $\beta = \sim (\sim \gamma * \beta)$, then we have (4) $(\sim \delta * \alpha) * \sim (\sim \gamma * \beta) = 0$ implies $\sim \sim (\sim \delta * \alpha) * \sim \sim \sim (\sim \gamma * \beta) = 0.$ From (4), if we let $\sim \sim (\sim \gamma * \beta) = 0$, then by 4), we have $\sim \delta * \alpha = 0$. Therefore, from (1), (2), (3), and (4) we have H) $\sim \beta * \alpha = 0, \sim \gamma * \beta = 0, \sim \delta * \gamma = 0$ imply $\sim \delta * \alpha = 0.$

Put $p = \sim \sim p$ in 1), $r = \sim \sim p$, and r = p in 8), then we have respectively

$$\sim$$
 (\sim $\sim p * \sim \sim p$) * $\sim \sim p = 0$,
 \sim ($\sim \sim p * p$) * ($\sim \sim p * \sim \sim p$) = 0,

 $\sim (p*p)*(\sim \sim p*p)=0.$ By H), we have $\sim (p*p)*\sim \sim p=0.$ On the other hand, putting q=p in 2), we have $\sim p*(p*p)=0.$ By B), we have $\sim \sim p*\sim p=0$, further by D) we have 9) $\sim p*p=0.$ In E), put $\beta=p, \alpha=p, \gamma=r$, then by 9), we have 10) $\sim (r*p)*(p*r)=0.$ In H), put $\delta=\gamma$, then by 9) we have I) $\sim \beta*\alpha=0, \sim \gamma*\beta=0$ imply $\sim \gamma*\alpha=0.$ Put r=p, p=q in 10) and q=p, p=q in 2), then we have $\sim (p*q)*(q*p)=0, \sim p*(p*q)=0.$ Hence by I), we have 11) $\sim p*(q*p)=0.$

Therefore the proof is complete.

References

- K. Iséki: An algebraic formulation of K-N propositional calculus. Proc. Japan. Acad., 42, 1164-1167 (1966).
- [2] C. A. Meredith and A. N. Prior: Notes on the axiomatics of the propositional calculus. Notre Dame Jour. Formal Logic, 4, 171-187 (1963).
- [3] J. B. Rosser: Logic for Mathematicians. New York (1953).
- [4] B. Sobocinski: Axiomatization of a conjunctive-negative calculus of propositions. Jour. Computing Systems, 1, 229-242 (1954).