9. An Algebraic Formulation of K-N Propositional Calculus. II

By Shôtarô Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1967)
In his paper [1], K. Iséki has defined $K-N$ algebra as follows: Let X be an abstract algebra consisting of $0, p, q, \cdots$, with a binary operation $*$ and a unary operation \sim satisfying the following conditions:
a) $\sim(p * p) * p=0$,
b) $\sim p *(q * p)=0$,
c) $\sim \sim(\sim \sim(p * r) * \sim(r * q)) * \sim(\sim q * p)=0$,
d) $\sim \sim \beta * \sim \alpha=0$ and $\alpha=0$ imply $\beta=0$, where α, β are expressions in X.

In this paper, we shall show that the $N K$-algebra is characterized by the following conditions:

1) $\sim(p * p) * p=0$,
2) $\sim q *(q * p)=0$,
3) $\sim \sim(\sim \sim(p * r) * \sim(r * q)) * \sim(\sim q * p)=0$,
4) $\sim \sim \beta * \sim \alpha=0$ and $\alpha=0$ imply $\beta=0$, where α, β are expressions (For the details on $N-K$ propositional calculus, see [2], [3], [4].)
K. Iséki has proved that the $N K$-algebra implies $\sim q *(q * p)=0$. Therefore we shall prove that 1), 2), 3), and 4) imply b).
A) $\sim \alpha * \beta=0$ implies $\sim \sim(\beta * \gamma) * \sim(\gamma * \alpha)=0$.

Proof. In 3), put $p=\beta, q=\alpha, r=\gamma$, then by 4) we have A). Then we have
B) $\sim \alpha * \beta=0, \sim \gamma * \alpha=0$ imply $\beta * \sim \gamma=0$.

In A), put $\alpha=p * p, \beta=p, \gamma=\sim p$, then $\sim(p * p) * p=0$ implies $\sim \sim(p * \sim p) * \sim(\sim p *(p * p))=0$.
By 2), we have
5) $p * \sim p=0$.

In 3), put $p=\sim \sim q, r=\sim r$, then

$$
\sim \sim(\sim \sim(\sim \sim q * \sim r) * \sim(\sim r * q)) * \sim(\sim q * \sim \sim q)=0
$$

And In 3), put $p=\sim \sim q$, then

$$
\sim \sim(\sim \sim(\sim \sim q * r) * \sim(r * q)) * \sim(\sim q * \sim \sim q)=0
$$

By 5), $\sim q * \sim \sim q=0$, hence we have
$\left.6_{1}\right) \sim \sim(\sim \sim q * \sim r) * \sim(\sim r * q)=0$, and
$\left.6_{2}\right) \sim \sim(\sim \sim q * r) * \sim(r * q)=0$.

These expressions mean
C) $\alpha * \beta=0$ implies $\sim \sim \beta * \alpha=0$ and $\sim \sim \alpha * \sim \sim \beta=0$.

In 6_{2}), put $r=p, q=\sim \sim p$, then

$$
\sim \sim(\sim \sim \sim p * p) * \sim(p * \sim p)=0
$$

By 5), we have
7) $\sim \sim \sim p * p=0$.

In 3), put $p=\sim \beta, q=\sim \alpha, r=\alpha$,

$$
\sim \sim(\sim \sim(\sim \beta * \alpha) * \sim(\alpha * \sim \alpha)) * \sim(\sim \sim \alpha * \sim \beta)=0
$$

By 5), $\alpha * \sim \alpha=0$, hence we have
D) $\sim \sim \alpha * \sim \beta=0$ implies $\sim \beta * \alpha=0$.

In 3), put $p=\alpha, q=\beta, r=\gamma$, then

$$
\sim \sim(\sim \sim(\alpha * \gamma) *(\gamma * \beta)) * \sim(\sim \beta * \alpha)=0
$$

And by D$) \sim \sim(\alpha * \gamma) * \sim(\gamma * \beta)=0$ implies $\sim(\gamma * \beta) *(\alpha * \gamma)=0$. Therefore, let $\sim \beta * \alpha=0$, then we have
E) $\sim \beta * \alpha=0$ implies $\sim(\gamma * \beta) *(\alpha * \gamma)=0$.

From E), we have the following variations:

$$
\begin{aligned}
\sim \alpha * \beta & =0 \quad \text { implies } \sim(\delta * \alpha) *(\beta * \delta) \\
\sim \gamma * \delta=0 & \text { implies } \sim(\alpha * \gamma) *(\delta * \alpha)=0 .
\end{aligned}
$$

By B) and the above variations, we have
F) $\sim \alpha * \beta=0, \sim \gamma * \delta=0$ imply $(\beta * \delta) * \sim(\alpha * \gamma)=0$.

In E), put $\alpha=\sim \sim p, \beta=p, \gamma=r$, then

$$
\sim p * \sim \sim p \text { implies } \sim(r * p) *(\sim \sim p * r)=0
$$

By 5), $\sim p * \sim \sim p=0$, hence we have
8) $\sim(r * p) *(\sim \sim p * r)=0$.

In 7), $p=\sim \alpha$, then $\sim \sim \sim \sim \alpha * \sim \alpha=0$. Therefore, let $\alpha=0$, then we have $\sim \sim=0$, that is,
G) $\alpha=0$ implies $\sim \sim \alpha=0$.

In G), put $\alpha=\sim \gamma * \beta$, then we have
(1) $\sim \gamma * \beta=0$ implies $\sim \sim(\sim \gamma * \beta)=0$.

In 6_{1}), put $r=\delta, q=\gamma$, then we have
(2) $\sim \sim(\sim \sim \gamma * \sim \delta) * \sim(\sim \delta * \gamma)=0 \quad$ implies $\sim \sim \gamma * \sim \delta=0$.

In F), put $\alpha=\sim \gamma, \beta=\sim \delta, \gamma=\beta, \delta=\alpha$, then
(3) $\sim \sim \gamma * \sim \delta=0, \sim \beta * \alpha=0 \quad$ imply $(\sim \delta * \alpha) * \sim(\sim \gamma * \beta)=0$.

In C), put $\alpha=\sim \delta * \alpha, \beta=\sim(\sim \gamma * \beta)$, then we have
(4) $(\sim \delta * \alpha) * \sim(\sim \gamma * \beta)=0$ implies

$$
\sim \sim(\sim \delta * \alpha) * \sim \sim \sim(\sim \gamma * \beta)=0 .
$$

From (4), if we let $\sim \sim(\sim \gamma * \beta)=0$, then by 4), we have $\sim \delta * \alpha=0$. Therefore, from (1), (2), (3), and (4) we have
H) $\sim \beta * \alpha=0, \sim \gamma * \beta=0, \sim \delta * \gamma=0$ imply $\sim \delta * \alpha=0$.

Put $p=\sim \sim p$ in 1), $r=\sim \sim p$, and $r=p$ in 8), then we have respectively

$$
\begin{aligned}
& \sim(\sim \sim p * \sim \sim p) * \sim \sim p=0 \\
& \sim(\sim \sim p * p) *(\sim \sim p * \sim \sim p)=0,
\end{aligned}
$$

$$
\sim(p * p) *(\sim \sim p * p)=0
$$

By H), we have $\sim(p * p) * \sim \sim p=0$.
On the other hand, putting $q=p$ in 2), we have $\sim p *(p * p)=0$. By B), we have $\sim \sim p * \sim p=0$, further by D) we have
9) $\sim p * p=0$.

In E), put $\beta=p, \alpha=p, \gamma=r$, then by 9), we have
10) $\sim(r * p) *(p * r)=0$.

In H), put $\delta=\gamma$, then by 9) we have
I) $\sim \beta * \alpha=0, \sim \gamma * \beta=0$ imply $\sim \gamma * \alpha=0$.

Put $r=p, p=q$ in 10) and $q=p, p=q$ in 2), then we have

$$
\sim(p * q) *(q * p)=0, \sim p *(p * q)=0
$$

Hence by I), we have
11) $\sim p *(q * p)=0$.

Therefore the proof is complete.

References

[1] K. Iséki: An algebraic formulation of $K-N$ propositional calculus. Proc. Japan. Acad., 42, 1164-1167 (1966).
[2] C. A. Meredith and A. N. Prior: Notes on the axiomatics of the propositional calculus. Notre Dame Jour. Formal Logic, 4, 171-187 (1963).
[3] J. B. Rosser: Logic for Mathematicians. New York (1953).
[4] B. Sobocinski: Axiomatization of a conjunctive-negative calculus of propositions. Jour. Computing Systems, 1, 229-242 (1954).

