8. Algebraic Formulation of Propositional Calculi with General Detachment Rule

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1967)

R. B. Angell [1] formulated a general detachment rule: α and $\varphi(c\alpha\beta)$ imply $\varphi(\beta)$, and further I. Thomas [7] considered on this general detachment rule.

On the other hand, in my notes ([3], [4]), I gave a fundamental idea of algebraic formulations of propositional calculi. This is as follows: Let $M = \langle X, 0, \{o_{\alpha}\} \rangle$ be an algebra consisting of a set X containing a zero element 0 and a family of operations $\{o_{\alpha}\}$ containing a binary operation *. On the operation *, there are common properties: 1) x * y = 0 is equivalent to $x \leq y$, 2) x = y is defined by x * y = y * x = 0. This means that if $x \leq y, y \leq x$, then x = y.

As easily seen from [1], [7], the general detachment rule is formulated in the form of x*0=x for all $x \in X$ in the algebra M. Therefore, if we add this axiom to the algebra M, we obtain an algebraic formulation of propositional calculi with a general detachment rule.

In this Note, we shall consider such algebras M.

- In our notes ([2], [5]), if an algebra $M = \langle X, 0, * \rangle$ satisfies
- 1) $(x*y)*(x*z) \leq z*y$,
- 2) $x*(x*y) \leq y$,
- 3) $x \leqslant x$,
- 4) $x \leq 0$ implies x = 0,

then M is called a BCI-algebra.

In the BCI-algebra, we have (x*y)*z=(x*z)*y (see Theorem 1 in [5]). Hence we have (x*0)*x=(x*x)*0=0 by 3), and further x*(x*0)=0 by 2). This shows x*0=x for all $x \in X$.

Then we have the following

Theorem 1. An algebra M is a BCI-algebra if and only if M satisfies

- 5) $((x*y)*z)*(u*z) \leq (x*u)*y$,
- 6) x * 0 = x,
- 7) $x \leq 0$ implies x = 0.

Proof. Put z=0 in 5), then

8) $(x*y)*u \leq (x*u)*y$.

Hence we have (x*y)*u=(x*u)*y. Next put y=0 in 5), then 9) $(x*z)*(u*z) \leq x*u$. By 8) and 9), we have

10) $(x*z)*(x*u) \le u*z$,

which is axiom 1). This implies that \leq is the transitive relation. Put z=0 in 10), then

 $x * (x * u) \leq u$,

which means axiom 2. Let u=0 in the relation above, then we have $x * x \le 0$. Hence 7) implies $x \le x$. Hence we complete the proof.

Theorem 2. An algebra M is a BCI-algebra if and only if M satisfies

11) $(x*y)*(x*z) \leq z*y$,

12) x * 0 = x,

13) $x \leq 0$ implies x = 0.

Proof. We shall only prove the 'if' part. Put y=0 in 11), then, by 12), we have

14) $x * (x * z) \leq z$,

which is axiom 2). Let z=0 in 14), then we have $x * x \le 0$. Therefore 13) implies x * x = 0. This means $x \le x$. We complete the proof.

In our Notes ([2], [5]), we define a BCK-algebra as follows: If axiom 4) in the BCI-algebra M is replaced by

15) $0 \leq x$ for all $x \in X$,

then M is called a BCK-algebra. Of course 'x * 0 = x for all $x \in X$ ' holds in the BCK-algebra.

As easily seen from the proof of Theorem 2, we have the following

Theorem 3. An algebra M is a BCK-algebra if and only if M satisfies

16) $(x*y)*(x*z) \le z*y$,

17) x * 0 = x,

18) $0 \leq x$.

As an example, we take up an axiom by C. A. Meredith [6]. Theorem 4. An algebra M is a BCK-algebra if and only if M satisfies

19) $((x*y)*z)*(x*u)*y) \le u*(z*v),$

- 20) x * 0 = x,
- 21) $0 \leq x$.

Proof. It is sufficient to show that the conditions 19), 20), and 21) imply axioms 1), 2), 3).

Put v=0 in 19), then

22) $((x*y)*z)*((x*u)*y) \le u*z$.

Let y=0 in 22), then we have

 $23) \quad (x*z)*(x*u) \leq u*z,$

which is axiom 1), i.e. 16). Hence by Theorem 3, we have axioms

32

2) and 3). Therefore we complete the proof.

Further, we shall take up a thesis $(x*y)*(x*(z*(u*y))) \leq z*u$ by C. A. Meredith [6].

Theorem 5. An algebra M is a BCI-algebra if and only if M satisfies

24) $(x*y)*(x*(z*(u*y))) \leq z*u$,

25) x * 0 = x,

26) $x \leq 0$ implies x=0.

Proof. Let y=0 in 24), then

27) $x * (x * (z * u)) \leq z * u$.

Put u=0 in 27), then we have

 $28) \quad x*(x*z) \leqslant z,$

which is axiom 2). Put z=0 in 28), then $x * x \le 0$. By 26), we have x * x = 0. This means

 $29) \quad x \leqslant x.$

Let u=y in 24), then, z*(u*y)=z*0=z, we have

$$(x*y)*(x*z)\leqslant z*y,$$

which is axiom 1).

Remark. If the condition 26) is replaced by $0 \le x$ for all $x \in X'$, then we have a characterization of a BCK-algebra. To prove it, put z=0 in 24), then by z*(u*y)=0*(u*y)=0, we have (x'*y)*x=0, which means $x*y \le x$. This completes the proof.

An algebra M is called an *I-algebra*, if M satisfies

 $30) \quad (x*y)*(x*z) \leq z*y,$

- $31) \quad x \leqslant x \ast (y \ast x),$
- $32) \quad x * y \leq x.$
- $33) \quad 0 \leqslant x.$

We give some characterizations of *I*-algebra.

Theorem 6. An algebra M is an I-algebra if and only if the following relations hold in M:

- $34) \quad (x*y)*(x*z) \leq z*y,$
- 35) $x * y \leq x * (z * x)$,
- 36) x * 0 = x,
- 37) $0 \le x$.

Proof. We shall give a proof of 'if' part. Let y=0 in 34), then $x \leq x * (z * x)$. Next z=0 in 34), then we have $x * y \leq x$ by 36) and 37). Therefore we complete the proof.

Theorem 7. An algebra M is an I-algebra if and only if the following relations hold in M:

- 38) $((x*y)*z)*(x*u) \leq (u*y)*(v*x),$
- 39) x * 0 = x,
- 40) $0 \le x$.

```
[Vol. 43,
```

Proof. Let z=v=0 in 38), then we have

41) $(x*y)*(x*u) \leq u*y$,

which is axiom 30). Put
$$u=0$$
 in 41), then

42) (x*y)*x=0,

which is axiom 32), and further we have $x \le x$. Next put y=z=0 in 38), then

43) $x * (x * u) \leq u * (v * x)$. Let u = y * x, v = y in 43), then $x * (x * (y * x)) \leq (y * x) * (y * x) = 0$,

hence $x \leq x * (y * x)$, which is axiom 31).

References

- R. B. Angell: The sentential calculus using rule of interference R_e. Jour. Symbolic Logic, 25, 143 (1960).
- [2] Y. Arari, K. Iséki, and S. Tanaka: Characterization of BCI, BCK-algebras. Proc. Japan Acad., 42, 105-107 (1966).
- [3] K. Iséki: Algebraic formulation of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
- [4] ----: A characterization of Boolean algebra. Proc. Japan Acad., 41, 893-897 (1965).
- [5] —: An algebra related with propositional calculus. Proc. Japan Acad., 42, 26-29 (1966).
- [6] C. A. Meredith and A. N. Prior: Notes on the axiomatics of the propositional calculus. Notre Dame Jour. Formal Logic, 4, 171-187 (1963).
- [7] I. Thomas: The rule of excision in positive implication. Notre Dame Jour. Formal Logic, 3, 64 (1962).