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7. On Hausdorff’s Theorem

By Yasusi TAKEMURA
Department of Mathematics, Kobe University

(Comm. by Kinjir6 KUNUGI, M.J.A., Jan. 12, 1967)

In his paper [2], Professor T. Sato considers directed sequences
of real numbers, and the Riemann-Stieltjes integral as its application.

In the case of the Riemann-Stieltjes integral, he generalizes
Darboux’s theorem on the Riemann integral and obtains the following
two theorems:

Theorem 1. Let {y,(x)} be a sequence of bounded functions
wn [a,b].

If "I’\l(x)g"["?.(x)g M 2—"!’”(37)% Tty and

lim "I’\u(x) =0,
then
lim Sbap,(x)da(x)zo.

Theorem 2. Let { f,,(a;-)} be a sequence of uniformly bounded
Sfunctions in [a, b].

If a sequence of functions f,(x) (n=1,2,...) converges to a
Sunction f(x), then

—ff,w)do(x =( )o@,

lim [* f(@)do(@) || fle)dot@).
We shall generalize the latter using his method.

In this note, we shall prove the following theorem which is a
generalization of the theorem 2.

Theorem. Let {f.(x)} be a sequence of wuniformly bounded
functions in [a, b].

Let f(x)=lim f,(x), flx)= hm f+(%), then we have

n—ooo

tim (' . (@Mo(@) | fo)dota),
lim [ ,@do)2 || fm)do.

“h—oe

To prove the theorem above, we shall first explain some notations.

Let o(x) be a continuous and strictly increasing function in
[a,b]. We subdivide the interval [a,b] by means of the points
Loy L1y ***y Lp_1y Tp, SO that
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D:a=z,<a, <+ <&, <z, =b.
We consider a set of subdivisions D and denote it by D.
Let m;, M,(j=1,2, ---, n) be the greatest lower and the least
upper bounds of f(x) in the subinterval [x;_,, «;] respectively. Put

3o f) =3 mi(0(w) — 0(z;..),
Su(f) =31 Mi(o(;) ~0(a;..).
Following Darboux terminology, sup s,(f) and inf S,(f) are called
DED DED

a upper and a lower integrals respectively.
Further we use the following notations,

' f(@)do(@)= lim s,(f),
a DED

|y

' f(@)do(@)= lim 8,(f).
L4 D€

Then we have
af (w)do(x)= ﬁg% sp(f),

ey [ ey |

b
f(x)do(x)=inf Sy(f).
a DED
Now we shall prove the theorem, mentioned above.

Put
(1) 0u(®)=inf ().

Then {¢,(x)} is a monotone non decreasing sequence of bounded
functions.

Put y.(x) =f () — ¢.(x). Then {y,(x)} is a monotone non increasing
sequence of bounded functions and

lim 4, () =0.

Therefore, by Theorem 1, we have

lim Sb«p,,(x)da(x) 0.

Hence for every ¢>0 there exists a positive integer N such that
b
(2) S a()do(@<e  for m=N.

Let I be any interval contained in [a,bd]. Then
inf (f(2)— pu(®)) Zinf (@) —sup p.(x).
z€I z€I z€I
Hence

sn(f_ ®n) gsp(f) —Sp(¢n).
Consequently

lim Sp(f—¢a)= lim {s,(f)— Spea)}
DED DED
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=lim s,(f)— lim Syx(¢,),
ped DED

which is written to the form of

[ (@ —guNdo@ 2| f@)o@ | ou)dat).

By the inequality (2), we have
[[@—eu@ndo@={ vumrdo@<e  for nzN.

Hence

S" [(x)da(x)<sbgo,(x)da(x)+e for m=N.

By (1), we have
¢n(w)§fn(x) (’n=1, 21 b ')-
Therefore

[ ouro@s=[ r.@aio).

Hence

S" f(x)do(x)<S: fu@do@)+e  for m=N.

Since ¢ is arbitrary, it follows that

[ do@slim ' f.(@)dota),

n—oco

and similarly

Iim | fu@do@)= | fm)dota).

n—roo
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Remark 1. If o(x)=x, then we have the case given by F.

Hausdorff [1].

Remark 2. In the Theorem, if a sequence of functions f,(x)
(n=1,2, ---) converges to a function f(x), then we obtain the

Theorem 2.
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