5. Some Generalizations of V. Trnkova's Theorem on Unions of Strongly Paracompact Spaces

By Yoshikazu YASUI

Department of Mathematics, Osaka Gakugei University

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1967)

V. Trnkova [5] has recently investigated the unions of strongly paracompact spaces and he has proved the following interesting theorem:

If space $X = X_1 \cup X_2$, X_1 , X_2 are closed and strongly paracompact subspaces, and the space $X_1 \cap X_2$ has the locally Lindelöf property, then X is itself strongly paracompact. In this note, we shall obtain some generalizations of V. Trnkova's Theorem.

Let us quickly recall the definitions of terms which are used in this note. Let X be a topological space, and \mathfrak{N} be a collection of subsets of X. The collection \mathfrak{N} is said to be *locally finite* if every point of X has a neighborhood which intersects only finitely many elements of \mathfrak{N} . The collection \mathfrak{N} is said to be *star finite* (resp. *star countable*) if each element of \mathfrak{N} intersects only finitely (resp. only countably) many elements of \mathfrak{N} . Finally, X is said to be *paracompact* (resp. *strongly paracompact*) if X is Hausdorff and every open covering of X has a locally finite open covering (resp. star finite open covering) of X as a refinement.

§1. Generalizations. In this section, we shall get some generalizations of V. Trnkova's Theorem. At first, we shall show some lemmas.

Lemma 1. Let $\mathfrak{B} = \{B_{\alpha} \mid \alpha \in A\}$ be a locally finite closed covering of a regular space X. If each B_{α} has the locally Lindelöf property as a subspace, then X has the locally Lindelöf property.

Proof. Let x_0 be an arbitrary point of X. Then, there exists a closed neighborhood $V_0(x_0)$ of x_0 in X such that $V_0(x_0)$ intersects only all the members $B_{\alpha_1}, \dots, B_{\alpha_n}$ containing x_0 . For each $i=1, 2, \dots, n$, by the locally Lindelöf property of B_{α_i} , we have the closed neighborhood $V_i(x_0)$ of x_0 in X such that $V_i(x_0) \cap B_{\alpha_i}$ has the Lindelöf property. Let $V = \bigcap_{i=0}^{n} V_i(x_0)$, then V is a neighborhood of x_0 and $V = V \cap (\bigcup_{i=1}^{n} B_{\alpha_i})$ $= \bigcup_{i=1}^{n} (V \cap B_{\alpha_i})$. This relation implies the Lindelöf property of V. Thus we get Lemma 1.

Lemma 2. Let $\{F'_{\alpha} \mid \alpha \in A\}$ be a locally finite closed covering of a regular space X where the index set A is a well ordered set. If we define as follows: $F_1 = F'_1$, $F_{\alpha} = \overline{F'_{\alpha} - \bigcup_{\beta < \alpha} F'_{\beta}}$ for each $\alpha > 1$, then $\{F_{\alpha} \mid \alpha \in A\}$ is a locally finite closed covering of X such that $Q = \bigcup_{\alpha \neq \beta} (F_{\alpha} \cap F_{\beta}) \subset \bigcup_{\alpha \in A} \mathfrak{B}(F'_{\alpha})$ where $\mathfrak{B}(F'_{\alpha})$ denotes the boundary of F'_{α} .

Proof. It is obvious that $\{F_{\alpha} \mid \alpha \in A\}$ is a locally finite closed covering of X. Suppose that x_0 be an arbitrary element of Q. Then, $x_0 \in F_{\alpha} \cap F_{\beta}$ for some $\alpha < \beta$, and hence $x_0 \in F'_{\alpha}$. If $x_0 \notin \mathfrak{B}(F'_{\alpha})$, then there exists a neighborhood $V(x_0)$ contained in F'_{α} and hence $V(x_0) \subset \bigcup F'_{\gamma}$. Then we get $x_0 \notin F_{\beta}$, which is a contradiction.

By use of the above lemmas, we shall prove the following theorem which is a generalization of V. Trnkova's theorem.

Theorem 1. Let $\mathfrak{F}' = \{F'_i \mid i=1, 2, \cdots\}$ be a locally finite closed covering of a regular T_1 -space X such that each member F'_i of \mathfrak{F}' is a strongly paracompact subspace. If $\mathfrak{B}(F'_i)$ has the locally Lindelöf property for each $i=1, 2, \cdots$, then X is strongly paracompact.

Proof. It is obvious that X is paracompact. Now, let $F_1 = F'_1$, $F_i = \overline{F'_1 - \bigcup F'_j}$ for i > 1 and $Q = \bigcup (F_i \cap F_j)$, then $\mathfrak{F} = \{F_i \mid i = 1, 2, \cdots\}$ is a locally finite closed covering of X such that $Q \subset \bigcup \mathfrak{B}(F'_i)$ by Lemma 2, and $\bigcup_{i=1}^{\infty} \mathfrak{B}(F'_i)$ has the locally Lindelöf property by Lemma 1. On the other hand, it is easily seen that Q is a closed subspace of X and hence Q is a paracompact subspace with the locally Lindelöf property. Therefore we can get the discrete covering $\mathfrak{G} = \{G_i \mid i \in A\}$ of Q such that G_i has the Lindelöf property for each $i \in A$ by V. Šedivá [2]. In order to show the strong paracompactness of X, let W be an arbitrary open covering of X, then it is sufficient to show that \mathfrak{W} has a star countable open covering of X as a refinement.

At first, we shall find the open covering \mathfrak{U} of X such that \mathfrak{U} is a star refinement of \mathfrak{W} and each member of \mathfrak{U} intersects at most one element of \mathfrak{G} . For this purpose, let $\mathfrak{W}' = \{W_{\alpha\lambda} \mid \alpha \in A; \lambda \in \Lambda\}$, where $W_{\alpha\lambda} = W_{\alpha} \cap (G_{\lambda} \cup (X-Q))$, then \mathfrak{W}' is an open covering of X and the refinement of \mathfrak{W} .

Now, since X is a regular T_1 -space, X is fully normal by A. H. Stone [4] and so there exists an open covering \mathfrak{U} of X such that \mathfrak{U} is a star refinement of \mathfrak{W}' . Let U be an arbitrary member of \mathfrak{U} and so U is contained in some member of \mathfrak{W}' , that is: $U \subset W_{\alpha_0 \lambda_0}$ $= W_{\alpha_0} \cap (G_{\lambda_0} \cup (X-Q))$ for some $\alpha_0 \in A, \lambda_0 \in \Lambda$, and therefore $U \cap Q \subset G_{\lambda_0}$. This implies that U intersects at most one element of G_{λ_0} of \mathfrak{G} from the mutual disjointedness of $\{G_{\lambda} \mid \lambda \in \Lambda\}$. Thus we can get the open covering \mathfrak{U} of X such that \mathfrak{U} is a star refinement of \mathfrak{W} and each member of \mathfrak{U} intersects at most one element of \mathfrak{G} .

Next, let $\mathfrak{U}_i = \mathfrak{U} \cap F_i^{(1)}$ for each $i=1, 2, \cdots$, then, there exists a

¹⁾ $\mathfrak{U} \cap F$ will denote the collection $\{U \cap F \mid U \in \mathfrak{U}\}$.

star countable covering \mathfrak{L}_i of F_i such that \mathfrak{L}_i is a open collection in F_i and a refinement of \mathfrak{U}_i by the assumption. For each $i=1, 2, \cdots$, and each $\lambda \in \Lambda$, we can get a countable subcollection $\mathfrak{L}_{\lambda i}$ of \mathfrak{L}_i such that $\mathfrak{L}_{\lambda i}$ is a covering of $G_{\lambda} \cap F_i$ from the Lindelöf property of $G_{\lambda} \cap F_i$, where we may assume that for each V_i^{λ} of $\mathfrak{L}_{\lambda i}$, $V_i^{\lambda} \cap G_{\lambda} \cap F_i \neq \emptyset$ and hence $V_i^{\lambda} \cap Q \subset G_{\lambda}$. Still more, for each $\lambda \in \Lambda$, let $\mathfrak{L}_{\lambda} = \left\{ \operatorname{Int} \left(\bigcup_{i=1}^{n} V_{j(k_i)}^{\lambda} \right) \middle| V_{j(k_i)}^{\lambda} \in \mathfrak{L}_{\lambda i} \right\}$ for $i=1, 2, \cdots, n; \bigcap_{i=1}^{n} V_{j(k_i)}^{\lambda} \neq \emptyset$; $j(k_i)=1, 2, \cdots$ for $i=1, 2, \cdots, n; n=1, 2, \cdots$. Then \mathfrak{L}_{λ} is evidently a countable open collection in X and furthermore we shall show that this collection \mathfrak{L}_{λ} is a covering of G_{λ} .

For this purpose, let x_0 be an arbitrary point of G_{λ} , then there exists a neighborhood $V(x_0)$ of x_0 in X such that " $V(x_0) \cap F_j \neq \emptyset$ " is equivalent to " $x_0 \in F_j$ ". Let F_{i_1}, \dots, F_{i_n} be all the members of \mathfrak{F} containing x_0 . For each $j=1, 2, \dots, n, x_0 \in G_{\lambda} \cap F_{i_j}$ and hence there exists an open neighborhood V'_{i_j} of x_0 in X such that $x_0 \in V'_{i_j} \cap F_{i_j} \subset V_{i_j}$ for some V_{i_j} of $\mathfrak{L}_{\lambda i_j}$. Let $G = V(x_0) \cap (\bigcap_{j=1}^n V'_{i_j})$, then G is a neighborhood of x_0 in X and $G \subset \bigcup_{j=1}^n V_{i_j}$ where $x_0 \in V_{i_j} \in \mathfrak{L}_{\lambda i_j}$. This means $x_0 \in \operatorname{Int} \left(\bigcup_{j=1}^n V_{i_j}\right)$ and $\operatorname{Int} \left(\bigcup_{j=1}^n V_{i_j}\right)$ is a member of \mathfrak{L}_{λ} . Lastly let $\mathfrak{P}_i = \{V - Q \mid V \in \mathfrak{L}_i - \bigcup_{\lambda} \mathfrak{L}_{\lambda i_j}\}$ for each $i=1, 2, \dots$ and $\mathfrak{P} = (\bigcup_{j=1}^n \mathfrak{P}_i) \cup (\bigcup_{\lambda} \mathfrak{L}_{\lambda})$. Then we shall show that this collection \mathfrak{P} is a star countable open covering of X and a refinement of \mathfrak{W} .

(1) \mathfrak{G} is an open family of X. For this purpose, it suffices to show that \mathfrak{G}_i is an open collection of X for each $i=1, 2, \cdots$. Let V-Q be an arbitrary member of \mathfrak{G}_i , where V is a member of $\mathfrak{G}_i - \bigcup_{\lambda} \mathfrak{G}_{\lambda_i}$. By the openness of V in F_i , there exists an open V' in X such that $V = V' \cap F_i$, and so

$$V = V' \cap F_i = V' \cap \left((X - \bigcup_{j \neq i} F_j) \cup (Q \cap F_i) \right)$$

= $\left(V' \cap (X - \bigcup_{j \neq i} F_j) \right) \cup (V' \cap Q \cap F_i)$

and hence $V-Q=V'\cap (X-\bigcup_{j\neq i}F_j)\cap (X-Q)$ is clearly open in X.

(2) § is a covering of X. Since $\bigcup \mathfrak{L}_{\lambda}$ is a covering of $\bigcup G_{\lambda}$, let x_0 be an arbitrary point of $X - (\bigcup \mathfrak{L}_{\lambda}^{*2)})$ and hence $x_0 \notin \bigcup G_{\lambda} = Q$, and so there exists only one positive integer i_0 such that $x_0 \in F_{i_0} - Q$. By the fact that \mathfrak{L}_{i_0} is a covering of F_{i_0} , there exists some open set U_0 in X such that $x_0 \in U_0 \cap F_{i_0} = V_0 \in \mathfrak{L}_{i_0}$. Since $\operatorname{Int}(V_0) = U_0 \cap \operatorname{Int}(F_{i_0}) \ni x_0$, $x_0 \in \operatorname{Int}(V_0)$ where $V_0 \in \mathfrak{L}_{i_0}$. Accordingly, if V_0 is a member of $\bigcup \mathfrak{L}_{\lambda}_{i_0}$, then $x_0 \in \bigcup \mathfrak{L}_{\lambda}^*$. This is contrary to $x_0 \in X - \bigcup \mathfrak{L}_{\lambda}^*$, and so $x_0 \in V_0 - Q$

²⁾ For the collection \mathfrak{u} of subsets of X, \mathfrak{u}^* will denote the set $\bigcup \{U \mid U \in \mathfrak{u}\}$.

 $\in \mathfrak{P}_{i_0}$. This means $x_0 \in \mathfrak{P}_{i_0}^*$.

(3) \mathfrak{G} is a refinement of \mathfrak{W} . It is obvious that \mathfrak{G}_i is a refinement of \mathfrak{W} for each $i=1, 2, \cdots$ and so let λ_0 be an arbitrary index of Λ and moreover V_0 be an arbitrary element of \mathfrak{D}_{λ_0} . Then we may rewrite as follows:

$$V_0 = \operatorname{Int}\left(\bigcup_{i=1}^n V_{j(k_i)}^{\lambda_0}\right)$$
 where $V_{j(k_i)}^{\lambda_0} \in \mathfrak{L}_{\lambda_0 k_i}$ and $\bigcap_1^n V_{j(k_i)}^{\lambda_0} \neq \emptyset$,

and so there exists a point x_0 such that $x_0 \in \bigcap_{1}^{n} V_{j(k_i)}^{\lambda_0}$. On the other hand, for each $i=0, 1, \dots, n$, there exists a member U_i of \mathfrak{U} such that $x_0 \in U_0$, and $x_0 \in V_{j(k_i)}^{\lambda_0} \subset U_i$ for $i=1, 2, \dots, n$. Therefore $V_0 \subset \bigcup_{1}^{n} V_{j(k_i)}^{\lambda_0} \subset \bigcup_{1}^{n} U_i \subset st(U_0, \mathfrak{U}) \subset W_{\alpha_0}$ for some $W_{\alpha_0} \in \mathfrak{W}$. This means that \mathfrak{D}_{λ_0} is a refinement of \mathfrak{W} .

(4) \mathfrak{H} is star countable.

(4.1) Let i_0 be an arbitrary positive number and V-Q be an arbitrary member of \mathfrak{F}_{i_0} where $V \in \mathfrak{F}_{i_0} - \bigcup \mathfrak{F}_{\lambda_{i_0}}$. By the definitions of $\{\mathfrak{F}_i \mid i=1, 2, \cdots\}$ and $Q, \mathfrak{F}_i^* \cap \mathfrak{F}_{i_0}^* = \emptyset$ for every $j \neq i_0$. If $(V-Q) \cap V_0 \neq \emptyset$ for some $V_0 = \operatorname{Int} \left(\bigcup_{i=1}^n V_{j(k_i)}^2 \right) \in \mathfrak{F}_i$, where $V_{j(k_i)}^2 \in \mathfrak{F}_{\lambda_i}$, then $(V-Q) \cap V_{j(i)}^2 \neq \emptyset$ for some $t \in \{k_1, k_2, \cdots, k_n\}$. Since $V_{j(i_1)}^2 \subset F_i$ and $V-Q \subset \operatorname{Int}(F_{i_0}) = \{y \mid y \notin F_i \text{ for every } i \neq i_0\}$, we have $t = i_0$. This fact shows the following: If $(V-Q) \cap V_0 \neq \emptyset$, then $i_0 \in \{k_1, k_2, \cdots, k_n\}$ and $(V-Q) \cap V_{j(i_0)}^2 \neq \emptyset$. On the other hand, $\{\lambda \mid V \cap V_{j(i_0)}^2 \neq \emptyset, V_{j(i_0)}^2 \in \mathfrak{S}_{i_0}\}$ is countable, and hence $\{\lambda \mid (V-Q) \cap V_{j(i_0)}^2 \neq \emptyset\}$ is countable by the facts that \mathfrak{L}_{i_0} is star countable and $\{\mathfrak{L}_{\lambda i_0} \mid \lambda\}$ is mutually disjoint. Furthermore \mathfrak{F}_{i_0} is clearly star countable. These mean that V-Q intersects only countably many elements of \mathfrak{F} .

(4.2) Let λ_0 be an arbitrary element of Λ , and $\operatorname{Int}(V_0)$ be an arbitrary member of \mathfrak{H}_{λ_0} where $V_0 = \bigcup \{V_{j(k_i)}^{\lambda_0} \mid V_{j(k_i)}^{\lambda_0} \in \mathfrak{H}_{\lambda_0 k_i}$ for $i=1, 2, \dots, n\}$. Then, by the definition of $\{\mathfrak{H}_{\lambda k_i} \mid \lambda\}$, all the indices of λ' that $V_{k_i}^{\lambda_0}$ intersects $V_{k_i}^{\lambda'_i}$ is countable for each $i=1, 2, \dots, n$, and therefore, in order to show that $\operatorname{Int}(V_0)$ intersects only countably many elements of $\bigcup \mathfrak{H}_{\lambda_i} \cap V_j^{\lambda'_i} \neq \emptyset$; $\lambda \neq \lambda, j \neq k_j\}$ is countable for each $i=1, 2, \dots, n$, $\{V_j^{\lambda'_i} \mid V_j^{\lambda'_i} \in \mathfrak{H}_{\lambda'_j}, V_{k_i}^{\lambda_0} \cap V_j^{\lambda'_j} \neq \emptyset$; $\lambda \neq \lambda, j \neq k_j\}$ is countable for each $i=1, 2, \dots, n$. In reality, this set is empty. Lastly we shall show that $\operatorname{Int}(V_0)$ intersects only countably many elements of $\bigcup \mathfrak{H}_{\lambda_i}$. For this purpose, let j be any integer, then we can consider the two cases: $[1] \ j \notin \{k_1, k_2, \dots, k_n\}$ and $[2] \ j \in \{k_1, k_2, \dots, k_n\}$. In the first case, $\operatorname{Int}(V_0) \cap \mathfrak{H}_j^* = \emptyset$. In the second case, that is, $j=k_{i_0}$ for some $i_0 \ (1 \leq i_0 \leq n), \ (V-Q) \cap V_0 \neq \emptyset$ is equivalent to \ (V-Q) \cap V_{k_{i_0}^{\lambda_0} \neq \emptyset^*. Since $\mathfrak{R}_{k_{i_0}}$ is star countable, $V_{k_{i_0}}^{\lambda_0}$ intersects only countably many elements of $\mathfrak{R}_{k_{i_0}} \neq \mathfrak{R}^*$.

No 1

elements of $\mathfrak{D}_{k_{i_0}}$. This shows that $\operatorname{Int}(V_0)$ intersects only countably many elements of \mathfrak{D}_j .

From (1), (2), (3), and (4), we can see that \mathcal{D} is a star countable open refinement of \mathfrak{W} . Since X is a regular T_1 -space, X is strongly paracompact by a theorem of Yu. Smirnov [3].

By use of Theorem 1, we can prove the following main theorem which is also a generalization of V. Trnkova's theorem.

Theorem 2. Let X be a regular T_1 -space and $\mathfrak{F} = \{F_\alpha \mid \alpha \in A\}$ be a locally finite, star countable closed covering of X such that $\mathfrak{B}(F_\alpha)$ has the locally Lindelöf property for each $\alpha \in A$. Then, in order that the space X be strongly paracompact, it is necessary and sufficient that F_α be a strongly paracompact subspace for each $\alpha \in A$.

Proof. Necessity is obvious and so we shall prove the sufficiency. Let $\{\mathfrak{F}_{\lambda} \mid \lambda \in \Lambda\}$ be all the components³⁾ of \mathfrak{F} and H_{λ} be $\mathfrak{F}_{\lambda}^{*}$ for each $\lambda \in \Lambda$. Then, by the definition of $\mathfrak{F}, H_{\lambda}$ is open and closed in X, and furthermore \mathfrak{F}_{λ} is a countable collection and hence $\{H_{\lambda} \mid \lambda \in \Lambda\}$ is discrete covering of X such that each H_{λ} is strongly paracompact for each $\lambda \in \Lambda$ by Theorem 1, and so X is strongly paracompact from the mutual disjointedness of $\{H_{\lambda} \mid \lambda \in \Lambda\}$. This completes the proof.

§ 2. Applications. In this section, we shall prove two theorems as the consequences of Theorem 1.

Definition. Let X be a topological space and K be a subset of X. A space X has the locally Lindelöf property at K if, for each x of K, there exists an arbitrary small neighborhood U of x in X such that U has the Lindelöf property.

Theorem 3. Let $\mathfrak{F} = \{F'_{\alpha} \mid \alpha \in A\}$ be a locally finite closed covering of a regular T_1 -space X such that X has the locally Lindelöf property at $\bigcup_{\alpha \in A} \mathfrak{B}(F'_{\alpha})$. If F'_{α} is strongly paracompact for each $\alpha \in A$, then X is strongly paracompact.

Proof. Let A be a well ordered set and $F_1 = F'_1$, $F_\alpha = \overline{F'_\alpha - \bigcup F'_\beta}$ for every $\alpha > 1$. Let $Q = \bigcup_{\alpha \neq \beta} (F_\alpha \cap F_\beta)$, then Q is closed in X and X has the locally Lindelöf property at Q by Lemma 2. Therefore $Q \subset \bigcup V(x)$, where V(x) is an open neighborhood of x in X with the Lindelöf closure. It is obvious that X is paracompact and so is normal, and hence there exists an open set G in X such that

³⁾ Let X be a topological space and let \mathfrak{F} be a collection of subsets of X. We call that \mathfrak{F}' , subcollection of \mathfrak{F} , is *connected* if for any two elements F_{α}, F_{β} of \mathfrak{F}' , there exists a finite sequence F_1, \dots, F_n of \mathfrak{F}' such that $F_1=F_{\alpha}, F_n=F_{\beta}$ and such that $F_i \cap F_{i+1} \neq \emptyset$ $(1 \leq i \leq n-1)$. \mathfrak{F}' is called *component* of \mathfrak{F} if no subcollection of \mathfrak{F} which contains \mathfrak{F}' is connected.

 $Q \subset G \subset \overline{G} \subset \bigcup V(x)$, and so \overline{G} is a neighborhood of Q and a closed paracompact subspace with the locally Lindelöf property. Therefore \overline{G} is strongly paracompact. On the other hand, let $H_{\alpha} = F_{\alpha} - G$ for each $\alpha \in A$, then it is easily seen that $\{H_{\alpha} \mid \alpha \in A\}$ is clearly a discrete closed collection and H_{α} is strongly paracompact, and so $H = \bigcup H_{\alpha}$ is strongly paracompact closed subspace of X. Then $\{H, \overline{G}\}$ is a closed covering of X such that subspaces H, \overline{G} are strongly paracompact and $H \cap \overline{G}$ has the locally Lindelöf property. This implies the strong paracompactness of X by Theorem 1 (or, by V. Trnkova's theorem $\lceil 5 \rceil$).

Theorem 4. Let X be a normal T_1 -space and $\mathfrak{G} = \{G_{\alpha} \mid \alpha \in A\}$ be a locally finite open covering of X. If G_{α} is a strongly paracompact subspace with the locally Lindelöf property for each $\alpha \in A$, then X is itself strongly paracompact.

Proof. Since X is normal, there exists a closed covering $\{F_{\alpha} \mid \alpha \in A\}$ of X such that $F_{\alpha} \subset G_{\alpha}$ for each $\alpha \in A$ and hence $\{F_{\alpha} \mid \alpha \in A\}$ is a locally finite closed covering of X such that F_{α} is strongly paracompact for each $\alpha \in A$. By the assumption, it is easily seen that X has a locally Lindelöf property at $\bigcup_{\alpha \in A} \mathfrak{B}(F_{\alpha})$. This completes the proof of Theorem 4.

Remark. Theorem 3 is a generalization of Theorem 2 in our previous note [1], from the point of view of obtaining only the strong paracompactness of a space.

In Theorem 5 in the same note [1], we assumed the regularity of X instead of the normality in Theorem 4, and more we assumed the locally Lindelöf property of $\mathfrak{B}(G_{\alpha})$ for each α . Therefore we may consider that Theorem 4 is a generalization of Theorem 5 in [1].

In conclusion, I express my hearty thanks to Prof. S. Hanai and Mr. A. Okuyama for their kind advices for me.

References

- [1] S. Hanai and Y. Yasui: A note on unions of strongly paracompact spaces. Memoirs of Osaka Gakugei University (to appear).
- [2] V. Šedivá: On collectionwise normal and hypocompact spaces. Cech. Math. Jour., 10 (84), 50-61 (1959).
- [3] Yu. Smirnov: On strongly paracompact spaces: Izv. Akad. Nauk SSSR, 20, 253-274 (1959).
- [4] A. H. Stone: Paracompactness and product spaces. Bull. Amer. Math. Soc., 54, 977-982 (1948).
- [5] V. Trnkova: Unions of strongly paracompact spaces. Dokl. Akad. Nauk SSSR, 146, 43-45 (1962), (Soviet Math., 3, 1248-1250).