3. A Remark on Components of Ideals in Noncommutative Rings

By Hidetoshi MARUBAYASHI

Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro SHODA, M.J.A., Jan. 12, 1967)

Let R be a noncommutative ring, let A be an ideal¹⁾ in R, and let M be a non-empty *m*-system in the sense of McCoy.²⁾ The right upper and the right lower isolated M-components of A, in the sense of Murdoch,³⁾ will be denoted by U(A, M) and L(A, M) respectively. In [3], D. C. Murdoch has obtained the following result:

If the ascending chain condition holds in the residue class ring R/A, then $L^{*}(A, M)^{(4)} = U(A, M)$ for some positive integer n.

The aim of this short note is to prove that n=1 under an assumption which is weaker than that of Murdoch.

Theorem. Let S[A, M] be the set of right ideal quotients AB^{-1} ,⁵⁾ where B runs over all ideals meeting the m-system M. Suppose that R satisfies the ascending chain condition for elements of S[A, M]. Then L(A, M) = U(A, M).

Proof. This result will follow from Theorem 5 of [3], if it can be shown that L(A, M) = L(L(A, M), M). By the assumption, there exists a maximal element A_0 in S[A, M] such that $A_0 = AB_0^{-1}$ for an ideal B_0 which meets M.

(i) We shall prove that $A_0 = L(A_0, M)$. Let x be any element of $L(A_0, M)$. Then we have $xRm \subseteq A_0$ for some $m \in M$. Hence $x \in A_0(m)^{-1} = A((m)RB_0)^{-1}$, where (m) is the principal ideal generated by m. Now we shall show that $(m)RB_0$ meets the m-system M. For, if $(m)RB_0$ does not meet M, then there exists a prime ideal P, by Lemma 4 of [2], such that $P \supseteq (m)RB_0$ and $P \cap M = \phi$. Hence we have $m \in P$ or $B_0 \subseteq P$. This is a contradiction. Therefore the maximal property of A_0 implies that $A_0 = A_0(m)^{-1}$. Thus $A_0 \supseteq L(A_0, M)$. The converse inclusion is obvious. Hence we have $A_0 = L(A_0, M)$.

(ii) We shall prove that $A_0 = L(A, M)$. By the definition, we have $A_0 \subseteq L(A, M)$. Let x be any element in L(A, M). Then we have $xRm \subseteq A$ for some $m \in M$. Thus $xRm \subseteq A_0$. Hence we obtain $x \in A_0(m)^{-1}$. By the above discussion, it is clear that $A_0 = A_0(m)^{-1}$. We have therefore $A_0 = L(A, M)$. This completes the proof.

¹⁾ The term "ideal" will mean "two-sided ideal".

²⁾ Cf. [2].

^{3), 4), 5)} Cf. [3].

Remark. S[A, M] has a unique maximal ideal. Because, let AB^{-1} and AC^{-1} be any two maximal ideals of S[A, M], where B and C are ideals which meet the *m*-system M. Then the product BC also meets M. Therefore $A(BC)^{-1}$ is a member of S[A, M]. It is clear that $A(BC)^{-1}$ contains AB^{-1} and AC^{-1} . Hence by the maximality of AB^{-1} and AC^{-1} , we obtain that $AB^{-1}=A(BC)^{-1}=AC^{-1}$.

Corollary. Suppose that R satisfies the ascending chain condition for ideals in R. Let P be a minimal prime divisor of an ideal A. Then $L(A, P)^{\epsilon_0}$ is a right primal ideal with adjoint P in the sense of Barnes.⁷⁾

Proof. Since L(A, P) = U(A, P), each element of C(P) is right prime⁸⁾ to L(A, P) by Lemma 3 of [3]. Hence this result will follow if it can be shown that P is not right prime⁹⁾ to L(A, P). P is obviously a minimal prime divisor of L(A, P). If P is right prime to L(A, P), then, by Corollary to Theorem 10 in [3], there exists a minimal prime divisor $P'(\neq P)$ of L(A, P) which is not right prime to L(A, P). Hence there exists an element b in C(P) which is not right prime to L(A, P). This is a contradiction.

References

- [1] W. E. Barnes: Primal ideals and isolated components in noncommutative rings. Trans. Amer. Math. Soc., 82, 1-16 (1956).
- [2] N. H. McCoy: Prime ideals in general rings. Amer. J. Math., 71, 823-833 (1948).
- [3] D. C. Murdoch: Contributions to noncommutative ideal theory. Canadian J. Math., 4, 43-57 (1952).

⁷⁾ Cf. [1].

^{8), 9)} Cf. [3].