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Let V=R" and V* its dual. Let M be a differentiable manifold
of dimension n and F(M) the bundle of r-frames of M. The
structure group of F(M) is denoted by G(n). The Lie algebra
(n) of G(n) is V(R) V* + V(R)S(V*)+ + V(R)S(V*).

A transitive graded Lie algebra is, by definition, a Lie
subalgebra - V+g0++... of V+ V(R) V*+ V(R)S(V*)+ ..., with

I V(R)S+I(V*), satisfying

where _1 V.
We call that is of order r if

g+g) for i +j<r
and

+-2 for i>__r and j__>0.

If k_l::0 and fl-0 then is said to be of type k. In general
r<_k+l.

Let Mo-/G be a homogeneous space of dimension n. Suppose
( is a finite dimensional Lie group whose Lie algebra is a transi-
tive graded Lie algebra of order r and of type k:- V+go+..-
where s-Max {r, k}.

We also suppose that G is a closed subgroup of G whose Lie
algebra is given by

Then G can be considered as a subgroup of G’(n).
Definition. Let M be a differentiable manifold of dimension n

and G a subgroup of G’(n) as above. A G-structure Pa(M)of order
r and of type k on M is a reduction of F’(M) to the group G.

Example 1. A2ne structure. Let G be the affine group and
G the isotropy subgroup at the origin so that GIG is the affine
space. Then - V/flI(n)- V+ V(R) V* and fl-flI(n). An affine struc-
ture on M is, by definition, a reduction of F(M) to the group G.
Affine structure is a G-structure of order 2 and of trpe 1.

Example 2. Projective s/ructu, e. Let G be the group of pro-
jective transformations of a real projective space of dimension n and
G the isotropy subgroup at the distinguished point so that GIG is
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the real projective space. Let p V* be the invariant complement
to I(n)1 in I(n)1. Then- V+I(n)+p and -flI(n)+p.
A projective structure on M is, by definition, a reduction of F(M)
to the group G. Projective structure is a G-structure of order 2
and of type 2.

Example 3. Conformal structure.
Let G be the group of MSbius transformations of a MSbius space

of dimension n and G the isotropy subgroup at a point so that GIG
is the MSbius space. Then -V+co(n)+co(n)- V+co(n)+ V* and
fl- co(n) + co(n). A conformal structure on M is, by definition, a
reduction of F*(M) to the group G. Conformal structure is a G-
structure of order 1 and of type 2.

Let P(M)be a G-structure of order r and of type k on M.
Let ( be the canonical form of F(M) restricted to P#(M). Then
is a V+0+...+{i._.-valued 1-form on P(M). Let o) be the
fl-component of , then (-(o)_, o)0, w, ..., o_,). For each u e P#(M),
let G, be the subspace of T,(P#(M)) consisting of vectors tangent
to the fibre through u. Then G,-{). A complement to G, in
T,(P#(M)) on which the forms o0, 0, ..., o)._, all vanish is called
a horizontal space at u. Let H be a horizontal space at u, then
H V. Now let and ] be elements of V, and X and Y the corre-
sponding elements in H. We define

c e Hom(V/k V, V+{)0+
by

c(, )-da(X, Y).
We shall denote the Hom(VA V, fl)-component of c by c. Then
c is a cocycle. Let H and H’ be two horizontal spaces atu. It
is easily seen that

c,-c e 3Hem(V, (},+) for i--1, 0, 1, ..., s-2.
Hence the cohomology class d of c is independent of the choice of
the horizontal space H. c is an element of the Spencer cohomology
group H+’" associated with the bigraded chain complex

5] ,_,(R) A(V*).

We call c-(c-, ce, c, ---, c"-) the structure tensor of the G-structure

Pa(M). c is a ] H’-valued function on Pa(M). P(M) is said to

be l-fiat if c-0 for i<__l-2.
C operates transitively on M0 and G can be considered as the

isotropy subgroup at a point of M0 so that Me=GIG. Me has a natural
G-structure. The G-structure is called the standard fiat G-structure.

A G-structure is said to be fiat if it is locally isomorphic with
the standard flat G-structure.
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If s-k/ 1 we set G’-G. If s-k, let G’ be a semidirect product
of G and the nilpotent Lie group generated by -++.-./+/..-.
Then G’ can be considered as a subgroup of G+(n) and whose image
under the projection G+(n)--G’(n) is just G.

There exists a reduction of F+(M) to G’ which is identical
with P(M). We shall denote the reduced bundle by P(M). Let
0’ be the canonical form of F+(M) restricted to P(M). Then 0’ is
a V/fl0+"" / fl_-valued 1-form on P’(M). Let c’ be the structure
tensor of P’(M). Then c’-(c-, c, c, ..., c-, c-), that is, H.-
components of c’ for i<=s-2 are identical with those of c.

Theorem 1. A G-structure Pa(M) of order r and of type k is
fiat if and only if it is (k+ 1)-flat, that is, c’-O.

Let Pa(M) be a G-structure of order r and of type k and the
sheaf of germs of infinitesimal automorphisms of Pa(M). Let 8 be
the stalk at x e M. Then dim ,__<dim Pa(M). We have the following

Theorem 2. Let Pa(M) be a G-structure of order r and of type
k on M. Suppose Io contains the identity element. Then Pa(M)
is fiat if and only if dim L-dimPa(M) at every point x of M.
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