102. On Diffeomorphisms of the n-Dis k^{*}

By William A. LABACH Florida State University (Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1967)

1. Introduction. Let D^n denote the closed unit *n*-disk in R^n and let Diff (D^n) denote the group of orientation preserving C^1 diffeomorphisms of D^n onto itself. We show here that, under a suitable topology, the injection $SO(n) \rightarrow Diff(D^n)$ is a weak homotopy equivalence. If follows as a corollary that every orientation preserving diffeomorphism of S^n onto itself which extends to a diffeomorphism of D^n is isotopic to the identity through such diffeomorphisms. This partially answers a question of Smale.

In the last section of the paper, we consider Diff (D^{n}) in the C^{1} topology and show that either SO (6) \rightarrow Diff (D^{s}) is not a weak homotopy equivalence or SO (6) is not a deformation retract of Diff (S^{s}) .

2. Preliminaries. Suppose $f \in \text{Diff}(D^n)$, $\varepsilon > 0$, and C is a compact subset of the interior of D^n . Let $W(f, \varepsilon, C)$ denote the set of all $g \in \text{Diff}(D^n)$ such that

and

 $|f(x)-g(x)| < \varepsilon$ for all $x \in D^n$

 $|\partial f_i/\partial x_k(x) - \partial g_i/\partial x_k(x)| < \varepsilon$ for all $x \in C$; $i, k = 1, \dots, n$. We take the sets $W(f, \varepsilon, C)$ as a basis for our special topology on

Diff (D^n) . Let B^n denote the interior of D^n and let Diff (B^n) denote the group of orientation preserving homeomorphisms of B^n in the coarse C^1 topology [6]. Let EDiff (B^n) denote the subset of Diff (B^n) consisting of elements which are extendable to diffeomorphisms of D^n . We endow EDiff (B^n) with the topology it inherits from Diff (B^n) . We let EDiff (D^n) denote the set Diff (D^n) with the topology induced from EDiff (B^n) by the inclusion map $i: B^n \rightarrow D^n$.

Stewart [9] has shown that SO(*n*) is a strong deformation retract of Diff (B^n) . Since EDiff (B^n) is mapped into itself throughout this deformation retraction, we have that SO(*n*) is a strong deformation retract of EDiff (B^n) also.

Let EDiff (S^n) denote the set of orientation preserving diffeomorphisms of S^n onto itself which are extendable to diffeomorphisms of D^n . We give EDiff (S^n) the compact-open topology.

^{*)} This research was partially supported by the National Science Foundation under Grant No. G-5458.

No. 6]

3. Diff (D^n) in the special topology.

Theorem 1. The injection $SO(n) \rightarrow Diff(D^n)$ is a weak homotopy equivalence.

Proof. Stewart [9] showed that SO(n) is a strong deformation retract of Diff (\mathbb{R}^n) in the coarse C^1 topology. It follows that SO(n) \rightarrow Diff (D^n) is a weak homotopy equivalence if and only if every \mathbb{R}^n bundle over a finite complex with group Diff (\mathbb{R}^n) contains a unique D^n bundle with group Diff (D^n) (Cf. [1]). By the result of Stewart just quoted, every \mathbb{R}^n bundle over a finite complex with group Diff (\mathbb{R}^n) contains a unique D^n bundle with group SO(n). To complete the proof, it is sufficient to show that every D^n bundle over a finite complex with group Diff (D^n) is equivalent to a D^n bundle with group SO(n).

Let ξ be a D^n bundle over a finite complex with group Diff (D^n) . Let ξ' be the EDiff (D^n) bundle induced by ξ . Then ξ' is equivalent to a D^n bundle η with group SO (n) since EDiff (D^n) is homotopy equivalent to SO (n). It follows that ξ and η are equivalent as Ehresmann-Feldbau bundles. Since the topology we have put on Diff (D^n) is the union [10, p. 131] of the EDiff and compact-open topologies, it follows by §5 of [8] that ξ and η are equivalent and the proof is complete.

Corollary. EDiff (S^n) is pathwise connected.

In problem 21 of the Seattle conference notes [4], Smale asks whether EDiff (S^n) is pathwise connected in the C^1 topology. Cerf has announced an affirmative answer to this question for $n \ge 8$ [3].

4. Diff (D^6) in the C^1 topology.

Theorem 2. Either the injection SO (6) \rightarrow Diff (D⁶) is not a weak homotopy equivalence or SO (6) is not a deformation retract of Diff (S⁵).

Proof. Let $J: \text{Diff}(S^5) \times I \rightarrow \text{Diff}(S^5)$ be a deformation retraction of Diff (S^5) onto SO (6), where I denotes the closed unit interval [0, 1], and suppose $f \in \text{Diff}(S^5)$. Define $\overline{f}(\theta, t) = tJ_{1-t}(\theta)$ where (θ, t) are polar coordinates for D^n (i.e., $\theta \in S^{n-1}, t \in I$). It is easy to see that $\overline{f} \in \text{Diff}(D^n)$. It follows by this construction that Diff (D^6) is the topological product Diff $(S^5) \times \text{Diff}(D^6; S^5)$ where Diff $(D^6; S^5)$ is the subgroup of Diff (D^6) consisting of diffeomorphisms which are the identity on S^5 in the C^1 topology and Diff (S^5) is the group of orientation preserving homeomorphisms of S^5 onto itself in the C^1 topology.

If SO (6) \rightarrow Diff (D⁶) is a weak homotopy equivalence, then $\pi_i(\text{Diff }(D^6; S^5)) = 0$ for all *i*. Cerf [2] has shown that $\pi_i(\text{Diff }(S^n))$ is isomorphic to the direct sum $\pi_i(\text{SO}(n+1)) + \pi_i(\text{Diff }(D^n; S^{n-1}))$ for

all *n* and all *i*. Milnor [5] has shown that $\pi_0(\text{Diff}(S^6)) \neq 0$. Thus $\pi_0(\text{Diff}(D^6; S^5)) \neq 0$ and we have a contradiction.

Smale [7] showed that SO (n+1) is a deformation retract of Diff (S^n) for $n \le 2$. It follows by Milnor's work [5] that this is generally false for $n \ge 6$.

It follows from Smale's work [7] that the injection SO $(n) \rightarrow$ Diff (D^n) is a weak homotopy equivalence for $n \leq 2$. Cerf [2] has shown that $\pi_0(\text{Diff}(D^3)) = 0$. There are no further results known on the homotopy of Diff (D^n) in the C^1 topology.

References

- [1] W. Browder: Open and closed disc bundles. Ann. Math., 83 (2), 218-230 (1966).
- [2] J. Cerf: La nullite du groupe Γ_4 . Sem. Cartan, 1962-1963.
- [3] ——: Isotopy and Pseudo-Isotopy. I. Cambridge University (1964) (mimeographed).
- [4] R. Lashof, Editor: Problems in differential and algebraic topology. Seattle conference (1963). Ann. Math., **81** (2), 565-591 (1965).
- [5] J. Milnor: On manifolds homeomorphic with the 7-sphere. Ann. Math., 64 (2), 399-405 (1956).
- [6] J. Munkres: Elementary Differential Topology. Princeton University Press (1963).
- [7] S. Smale: Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc., 10, 621-626 (1959).
- [8] N. Steenrod: The Topology of Fibre Bundles. Princeton University Press (1951).
- [9] T. E. Stewart: On groups of diffeomorphisms. Proc. Amer. Math. Soc., 11, 599-563 (1960).
- [10] R. Vaidyanathasamy: Set Topology. Chelsea, New York (1960).

450