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92. On the Jacobian Varieties of
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(Comm. by Kenjiro SHODA, M.J.A., June 12, 1967)

Let p be any prime number, and consider the Davenport-Hasse
curves C, defined by the equations
(1) Yr—y=a"" (@=1,2,8, --+)
over the prime field GF(p). If we denote by 6 a primitive (p*—1)
(p—1)-th root of unity in the algebraic closure of GF'(p), the map
(2) o: (%, y)—(0x, 67°'y)
defines an automorphism of C,, which generates a cyclic group G of
order (p*—1)(p—1). In this note we shall investigate the following
problems:

1. To determine the l-adic representation of the automorphism
group G (Theorem 1).

2. The decomposition of the jacobian variety J, of C, into
simple factors (Theorem 2,3).

3. To give explicitly generators of endomorphism algebra
(Theorem 5).

Detailed proofs and other aspects of Davenport-Hasse curves
will be published elsewhere.

The author thanks to Professor Morikawa for his kind encourage-
ment.

1. If we put z=y*"?, the curve C, is birationally equivalent to
a curve defined by the equation

( 3 ) w(r"—-l)(z’—l) — z(z____ 1)?—-1.
The previous automorphism ¢ is given in this case by
2y o: (2, ©)—(z, 0x).

Now the following lemma is easily proved.

Lemma 1. The smallest natural number f such that p”=1mod.
(p*—1)(p—1) is equal to a(p—1).

Owing to this lemma, 6 belongs to the field k=GF(p**~). So
the algebraic function field k(z, ) defined by the equation (3) is a
Kummer extension over k(z) of degree (p*—1)(p—1), whose Galois
group G is generated by o. We denote by b, b, the prime divisors
of k(z) which are the numerators of principal divisors (z), (z—1)
respectively, and by p., the denominator of (z). Then on account
of the equation (3), every prime divisor of k(z) other than j,, b, P
is not ramified in k(z, z). We shall make the table of behavior of
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the p; (¢=0, 1, o0) in k(z, x), where the notation is as usual.

k(z) k(z, ) e P p
Po %o (p*—1)(p—1) 1 1
P1 Br,1, + oo, Br,pmt pe—1 1 p—1
b $es - =11 11

Since the prime divisors P, By, (I1<i<p—1), P.. of k(z, x) have
their degrees equal to one, they correspond respectively to the
points P,, P,;1<i<p—1), P. of the curve C,. Let P be a point of
C, and n a positive integer. Let V,(P) be the nm-th ramification
group of P in G in the meaning of Weil [3]. Then, because of
this table, we have

Vi(P)=V(P)=G
(4) Vi(P,,;)={0*; y=0mod. p—1} 1<i<p-1)

Vo(Py)) = Vy(P..)= V(P,,;)={e}.

We denote by &, the correspondences of C, defined by the
elements « of G. Then the &, induce endomorphisms on the Tate
group T,(J,) of the jacobian variety J, of C,. So we have a
representation of G in the field of [-adic numbers, which is also
written as &,. We denote by ap(a), for a=£e, the multiplicity of
Px P in the intersection g4-£&,, where 4 is the diagonal of C xC,.
We shall quote the result of Weil [3].

Lemma 2. The trace of the representation &, of G in T,(J,)
is given by the formula:

Tr(é,)=2— > ap(a) (€=e)
(5) P
Tr(¢.)=2¢
where ¢ is the genus of C, and is equal to (p*—2)(p—1)2.
From this lemma and (4), we can get

_[—(p—1) y=0mod. p—1 (0”+e)
(6) Tr(E”")_{ 0 v=0mod. p—1.
Let + be a generator of the character group G* of G. Then we have
(p%—1) (p—1)

Tr¢)= > (@),

where the coefficients ¢, are calculated by the relations of orthogo-
nality of characters:
1
= > ¥ )Tr(&,).
(*—1)(p—1) éce
From (5), (6) we get

Cu

_{1 p#=0mod. p*—1
710 p=0mod. p*—1.
Thus we obtain
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Theorem 1. The [-adic representation &, in T,(J,) of the
automorphism group G is the direct sum of the irreducible repre-
sentations +* of multiplicity one, where v runs from 1 to (p°—1)
-(p—1) except v=0mod. p*—1.

2. In the first place we shall summarize the fact about the
prime ideal decompositions of characteristic roots of Frobenius
endomorphism (Davenport-Hasse [1]). Let x be a character of order
p*—1 of GF(p*)*. Then the characteristic roots of p°th endo-
morphism on J, are
() so=-greenHlew]  (p )
Hereafter we shall put ¢g=p°. We denote by K, the field of the
n-th roots of unity over the field @ of rational numbers. Then
the 7;(x‘) belong to K,,_,. The automorphism group of K, , over
Q is isomorphic to the group R of prime residue-classes mod. g—1.
Denote by P the subgroup of R which is generated by » mod.qg—1,
and let o run through representatives of the factor group R/P: R
= S1pP. Then the prime ideal decompositions of p in K, ; and

K,,(:_U can be written as follows:
(0= I1 %, in K., ()= II Br! in Ky

For the sake of simplicity, we put t(y*)=7,(x"). Then it is easy to
see that

=D =) A<i<p—1)
by the automorphisms exp (g-g)——» exp <2—$7’y> of K,,, over K,_,.

For a rational integer «, we denote by A(a)=a,+a,p+ .- +a, p**
0<a;<p—1, not all a;=p—1) the smallest non-negative residue of
amod. ¢—1, and put o(@)=a,+a,+++++a,_;. Then the prime ideal
decompositions are as follows:

(X)) = l;I Prerin Ky,
( 8) (T(Xt)p—l)___ I;[ p;(pt) in Kq_l.

We shall say that z,(x") and 7,(x*) are equivalent when there
exist natural numbers #n, m such that z,(}*)™ and z,(x*)" are conjugate
to each other as algebraic numbers. Then, this is an equivalence
relation. Let J, be isogenous to a product:
(9) J,~AxA,x-+xA;, A;=B;X+++XB; (i=1, -+, h),
where the B; are simple abelian varieties not isogenous to each
other. Then the A,(i=1, ..., k) are in one-to-one correspondence
to the equivalence classes of the z,(y*) (Tate [2]).

The following lemma is easily checked.

Lemma 3. For 0<a<p*—1 we have
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) 1<o(@)<a(p—-1)-1,

ii) o(a)=1 if and only if a=p" (0<i<a—1),

iii) o(@)=a(p—1)—1 if and only if a=p*—1—p" (0<i<a—1).

Suppose that ¢ satisfies (¢, p°—1)=d>1, then (i(ot), p*—1)=d,
and by this lemma o(ot) cannot take the value 1 nor the value
a(p—1)—1 for any p. On account of this fact and the prime ideal
decomposition (8) of z(}*), we can conclude the following

Proposition 1. If ¢ satisfies (¢, p*—1)>1, then z()) and z(x%)
are not equivalent.

Corollary. The set {z;,(x*);(¢,p*—1)=1,1< pu<p*—1,1<i<p—1}
fills up just an equivalence class of the z;(x%).

We denote by K the decomposition field of p in K, ,, and put

Qr(x)= ﬁ Q(z()*). Then from lemma 3, we are able to see that
p=1

Q. contains K. To show that the converse is also true, we need
the following lemma which can be deduced from the expression of
7(x) as a Gaussian sum.

271

Lemma 4. 7(¥) is invariant under the automorphisms equ—1

— exp 2L7'1pi (=1, -+, a) of K,,_p over K,.
q_

After all we can reach at the equality:
(10) Q. =Qz(x)* ") =K.

Now in the expression (9) of J, as a product, let A, correspond
to the equivalence class, to which z()) belongs (Prop. 1, Coroll.).
Hereafter we put A=A,. By virtue of what has been outlined, we
may apply results of Tate [2] to our case.

Proposition 2. i) The endomorphism algebra 4,(A4) of A is a
central simple algebra over K, which splits at all finite primes of
K not dividing p.

ii) The local invariants of /4,(A) at the primes p, are given by

invy [ A(4)1=—20)_mod. Z.
a(p—1)

iii) The dimension of the simple constituent B of A is dim B
=(p—1)-p(p*—1)/2.

From Proposition 2, iii), we know that A is a simple abelian
variety. Hence we have

Theorem 2. The jacobian variety J, of the curve C, contains
as simple component the simple abelian variety A with multiplicity
one, which has 7())** as a characteristic root of the p**-th
endomorphism. (We may say that A is the main component of J,.)

As for the problem of the complete decomposition of .J, into
simple factors, we can prove the following



No. 6] Jacobian Varieties of Davenport-Hasse Curves 411

Theorem 3. For a=1, we have
Ji~ [T (ByX+++XBy) (each B, appears t times)
t

where the index ¢ runs over all divisors of p—1 except t=p—1,
and each B, is a simple abelian variety which has 7(}¥*) as a
characteristic root, and B, is not isogenous to B, for t=t’.

3. According to the notation of (9), the Tate group T,(J,) is
the direct sum of the Tate groups T,(A4;). Since the endomorphisms
&, of Ty(J,) induce endomorphisms & on each T)(4;), the represen-
tation &, on Ty(J,) of the automorphism group G of the curve C, is
the direct sum of the representations £ on T,(4;). Let as before
A=A, be the main component of J,. Then we have

Theorem 4. The representation £ of G on T,(A) is the
direct sum of the irreducible representations +* of multiplicity one,
where v runs through representatives of prime residue -classes
mod. (p*—1)(p—1).

Outline of proof. As ,(A) is a division algebra, the character-
istic roots of & are conjugate to each other. On the other hand
the characteristic roots of &, are, by Theorem 1, {y*(o); v=1, -.-,
(p*—1)(p—1), v=0mod. p®*—1}. From these facts and the equality
o(p*—1)(p—1)=(p—1)-o(p*—1)=2dim A, the assertion may be
deduced.

Corollary. Q(£%) is the field Ko 1oy of (p°—1)(p—1)-th
roots of unity.

Although the structure of the algebra _4(A) is determined by
Proposition 2, we shall give generators of 4,(4) explicitly. The
p-th endomorphism [] and the endomorphism &, of J, induce endo-
morphisms of A, which are again denoted by [] and &, respectively.
Let K denote the decomposition field of p in Q(&,), which is also
the decomposition field of p in K,._;. Then we can prove

Theorem 5. The endomorphism algebra 7,(4) of the main
component A of J, is the cyclic algebra over K:

(IT**", Q(&,), 7)
where ¢ is the automorphism of the curve C, defined by (2), and =
is a generating automorphism of Q(¢,) over K.
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