143. On the Cauchy Problem for the Equation with Multiple Characteristic Roots

By Tadayoshi Kano
Faculty of Science, Osaka University

(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1967)

1. Introduction. 1.1. S. Mizohata [1] obtained the necessary condition for the well posedness in Petrowsky's sense of the Cauchy probem for

$$
M[u]=\frac{\partial}{\partial t} u-\sum_{j=1}^{n} A_{j}(x, t) \frac{\partial}{\partial x_{j}} u
$$

where $\left\{A_{j}(x, t)\right\}$ are $N \times N$ matrices which are bounded and sufficiently smooth in x and t.

In [1] the first approximation to M plays an important part. M is approximated by the singular integral operator associated with tangential operator.

Now we consider the higher order approximation to differential operator in some sense, and get a result presented in the following paragraphs.
1.2. Consider the differential operator
where

$$
x=\left(x_{1}, \cdots, x_{n}\right), \quad\left(\frac{\partial}{\partial x}\right)^{\nu}=\left(\frac{\partial}{\partial x_{1}}\right)^{\nu_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\nu_{n}}
$$

and $\left\{a_{\nu, j}(x, t)\right\}$ are contained in $\mathscr{B}_{x, t}$.
We denote the principal part of L by

$$
\begin{equation*}
L_{0}=\left(\frac{\partial}{\partial t}\right)^{m}+\sum_{\substack{\nu \mid y j=m \\ j \leftrightarrows m=1}} a_{\nu, j}(x, t)\left(\frac{\partial}{\partial x}\right)^{\nu}\left(\frac{\partial}{\partial t}\right)^{j} \tag{2}
\end{equation*}
$$

and associate the characteristic equation to it:

$$
\begin{equation*}
L_{0}(x, t, \xi ; \lambda)=\lambda^{m}+\underset{\substack{|\nu| j=j=m \\ j \leq m-1}}{ } a_{\nu, j}(x, t) \xi^{\nu} \lambda^{j}=0 \tag{3}
\end{equation*}
$$

where $\xi^{\nu}=\xi_{1}^{\nu_{1}} \cdots \xi_{n}^{\nu}$.
1.3. We consider the Cauchy problem for (1) in L^{2} sense.

Definition. The Cauchy problem for (1) is said to be well posed in L^{2} sense if there exists a unique solution $u=u(x, t)$ of $L u=0$ such that

$$
\begin{equation*}
u(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{D}_{L^{2}}^{m-1}\right) \cap \cdots \cap \mathcal{E}_{t}^{m-1}\left(L^{2}\right),(0 \leqq t \leqq T) \tag{4}
\end{equation*}
$$

for any initial data Ψ

$$
\begin{equation*}
\Psi=\left\{\left.\left(\frac{\partial}{\partial t}\right)^{j} u\right|_{t=0}=u_{j}(x) \in \mathscr{D}_{L^{2}}^{m-j-1}, j=0,1, \cdots, m-1\right\} . \tag{5}
\end{equation*}
$$

Our result is
Theorem. If (3) has multiple characteristic roots with constant multiplicity, then the Cauchy problem for (1) is not well posed in L^{2} sense.
1.4. Our theorem means essentially the following fact: If (3) has multiple characteristic roots with constant multiplicity, then there exists a lower order operator B for L_{0}, such that the Cauchy problem for $\left(L_{0}+B\right) u=0$ is not well posed in L^{2} sense. In fact, if there exists such a B we decompose L which has L_{0} as its principal part as follows:
(6)

$$
L=L_{0}+B+\left\{\left(L-L_{0}\right)-B\right\} .
$$

Then we can prove that the Cauchy problem for (6) is not well posed in L^{2} sense with the same reasoning as for $L_{0}+B$. Because $\left\{\left(L-L_{0}\right)-B\right\}$ is a lower order differential operator.
1.5. We shall prove our theorem only when L_{0} has a double characteristic root, the general case can be treated by the same fashion. First we formulate the following two conditions (I) and (II) about L_{0} :
(I) All roots of (3) are real for any real $\xi \neq 0$.
(II) There exist a neighbourhood Ω_{0} of $(x, t)=(0,0)$ and a neighbourhood Ω_{1} of $\xi_{0}^{\prime}=\xi_{0} /\left|\xi_{0}\right|$ on the unit sphere such that for all $(x, t, \xi) \in \Omega_{0} \times \Omega_{1}, L_{0}(x, t, \xi ; \lambda)$ can be written as

$$
L_{0}(x, t, \xi ; \lambda)=\left(\lambda-\lambda_{1}\right)^{2} \prod_{j \neq 1}\left(\lambda-\lambda_{j}\right)
$$

where $\left\{\lambda_{j}\right\}_{j \neq 1}$ are distinct roots of (3). Then we have
Lemma. Assume that (2) satisfies (I) and (II). Then there exists a differential operator B of lower order such that the Cauchy problem for

$$
\begin{equation*}
\left(L_{0}+B\right) u=0 \tag{7}
\end{equation*}
$$

is not well posed in L^{2} sense.
The proof of this Lemma is given in the paragraph 4 and get our Theorem as remarked above.
2. Approximation to $L_{0}+\boldsymbol{B}$. 2.1. Defining the lower order operator B by for the case: $\xi_{0}^{\prime}=(1,0, \cdots, 0)$

$$
\begin{equation*}
B=b\left(\frac{\partial}{\partial x_{1}}\right)^{m-1}, b: \text { real constant to be determined later, } \tag{8}
\end{equation*}
$$ we can write (7) in the following system with a new unknown vector $U={ }^{t}\left(u,\left(\frac{\partial}{\partial t}\right) u, \cdots,\left(\frac{\partial}{\partial t}\right)^{m-1} u\right)$:

$$
\begin{equation*}
\frac{\partial}{\partial t} U=A\left(x, t, \frac{\partial}{\partial x}\right) U \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& A\left(x, t, \frac{\partial}{\partial x}\right)=\left[\begin{array}{ccccc}
0, & 1, & 0, & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
-a_{m}\left(x, t, \frac{\partial}{\partial x}\right)-b\left(\frac{\partial}{\partial x_{1}}\right)^{m-1} & , \cdots, & 0, a_{1}\left(x, t, \frac{\partial}{\partial x}\right)
\end{array}\right] \tag{10}\\
& a_{j}\left(x, t, \frac{\partial}{\partial x}\right)=\sum_{\left\lvert\, \sum_{\mid=j} a_{\nu, m-j}(x, t)\left(\frac{\partial}{\partial x}\right)^{\nu} .\right.}
\end{align*}
$$

2.2. Take functions $\beta(x) \in C_{x}^{\infty}$ and $\widehat{\alpha}(\xi) \in C_{\xi}^{\infty}$ with small supports, which take the value 1 in a neighbourhood of $x=0$ and in a neighbourhood of ξ_{0} (in which $\xi=0$ is not contained), respectively.

Defining $\hat{\alpha}_{n}(\xi)$ by $\hat{\alpha}_{n}(\xi)=\hat{\alpha}\left(\frac{\xi}{n}\right)$, we denote the Fourier inverse image of $\widehat{\alpha}_{n}(\xi)$ by $\alpha_{n}(x)$. Then $\alpha_{n}(x)$ is analytic.

First we multiply (9) by $\beta(x)$. Next we apply the convolution operator $\alpha_{n}(x) *$. Then we get

$$
\begin{align*}
& \frac{\partial}{\partial t} \alpha_{n} *(\beta U)=A\left(x, t, \frac{\partial}{\partial x}\right)\left(\alpha_{n} *(\beta U)\right) \tag{11}\\
& \quad+\left[\alpha_{n} *, A\right](\beta U)+\alpha_{n} *([\beta, A] U)
\end{align*}
$$

Take the operator

$$
E_{m}(\Lambda)=\left[\begin{array}{cccc}
\{i(\Lambda+1)\}^{m-1} & & & \\
\{i(\Lambda+1)\}^{m-2} & & 0 \\
\cdot & & & \\
0 & & \cdot & 1
\end{array}\right]
$$

and apply to (11). Then we get

$$
\begin{align*}
& \frac{\partial}{\partial t} E_{m} \alpha_{n} *(\beta U)=E_{m} A E_{m}^{-1}\left(E_{m} \alpha_{n} *(\beta U)\right) \tag{12}\\
& \quad+\left[\alpha_{n} *, A E_{m}^{-1}\right] E_{m}(\beta U)+\alpha_{n} *\left(\left[\beta, A E_{m}^{-1}\right] E_{m} U\right) .
\end{align*}
$$

It is not hard to see that $\left[\alpha_{n} *, A E_{m}^{-1}\right]$ and $\left[\beta, A E_{m}^{-1}\right]$ are bounded operators in L^{2}.
2.3. We can approximate $E_{m} A E_{m}^{-1}$ by the singular integral operator $\mathscr{H}=\mathscr{H}_{0}+\mathscr{H}_{1}$ modulo bounded operators in L^{2} :

$$
\begin{equation*}
E_{m}(\Lambda) A\left(x, t, \frac{\partial}{\partial x}\right) E_{m}^{-1}(\Lambda)=\left(\mathcal{H}_{0}+\mathscr{H}_{1}\right) \Lambda+B_{1} \tag{13}
\end{equation*}
$$

where

$$
\left.\mathscr{H}_{0}=\left[\begin{array}{cccc}
0, & i, & \cdots, & 0 \tag{14}\\
\cdot & \cdot & \cdot & \cdot \\
0, & \cdots, & 0, & i \\
h_{m}, & \cdots, & h_{1}
\end{array}\right], \mathscr{H}_{1}=\left[\begin{array}{c}
0 \\
\\
b_{0},
\end{array}\right], \cdots, 0\right]
$$

with the symbols

$$
\begin{align*}
& \sigma\left(h_{j}\right)=-i \sum_{|\nu|=j} a_{\nu, m-j}(x, t) \hat{\gamma}(\xi) \frac{\xi^{\nu}}{|\xi|^{j}} \tag{15}\\
& \sigma\left(b_{0}\right)=i b \hat{\gamma}(\xi) \frac{\xi_{1}^{m-1}}{|\xi|^{m}}
\end{align*}
$$

B_{1} is a bounded operator in L^{2}. Finally $\hat{\gamma}(\xi)$ is a function which is infinitely differentiable, and vanishes for $|\xi| \leqq R(>1)$ and takes the value 1 for $|\xi| \geqq R+1$ as $0 \leqq \hat{\gamma}(\xi) \leqq 1$.

Now we set $V_{n}=E_{m}(\Lambda) \alpha_{n} *(\beta U)$ and $F_{n}=\left[\alpha_{n} *, A E_{m}^{-1}\right] E_{m}(\beta U)$ $+\alpha_{n} *\left(\left[\beta, A E_{m}^{-1}\right] E_{m} U\right)$. Using (13), we get from (12)

$$
\begin{equation*}
\frac{d}{d t} V_{n}=\left(\mathcal{H}_{0}+\mathcal{A}_{1}\right) \Lambda V_{n}+B_{1} V_{n}+F_{n} \tag{16}
\end{equation*}
$$

3. Differential inequality. 3.1. First we shall calculate the eigenvalues of $\sigma(\mathscr{H})=\sigma\left(\mathscr{H}_{0}\right)+\sigma\left(\mathscr{H}_{1}\right)$. We set $A_{0}=\sigma\left(\mathscr{H}_{0}\right)$ and A_{1} $=\sigma\left(\mathscr{H}_{1}\right)|\xi|$. Following to the method due to Vishik-Lyusternik [2], we can get the eigenvalues of $A_{\varepsilon}=A_{0}+\varepsilon A_{1}(\varepsilon=1 /|\xi|)$ as the perturbation to the eigenvalues of A_{0}.

Considering the condition (II) about L_{0}, the eigenvalues of A_{ε} are given in the following Puiseux expansion form for sufficiently small ε :

$$
\begin{gather*}
\lambda_{\varepsilon, 1}=\lambda_{1}+\lambda_{1}^{(1)} \varepsilon^{1 / 2}+\lambda_{2}^{(1)} \varepsilon+\cdots \\
\lambda_{\varepsilon, 2}=\lambda_{1}+\lambda_{1}^{(2)} \varepsilon^{1 / 2}+\lambda_{2}^{(2)} \varepsilon+\cdots \\
\lambda_{\varepsilon, 3}=\lambda_{2}+\lambda_{1}^{(3)} \varepsilon+\lambda_{2}^{(3)} \varepsilon^{2}+\cdots \tag{17}\\
\vdots \\
\lambda_{\varepsilon, m}=\lambda_{m-1}+\lambda_{1}^{(m)} \varepsilon+\lambda_{2}^{(m)} \varepsilon^{2}+\cdots
\end{gather*}
$$

3.2. Taking the method for getting the coefficients of these expansions into account, $\left\{\lambda_{\varepsilon}, j(x, t, i \xi)\right\}$ are sufficiently smooth to be the symbols of singular integral operators. We consider singular integral operators $R_{\varepsilon, 1}, \cdots, R_{\varepsilon, m}$ defined by the symbols $\hat{\gamma}(\xi) \lambda_{\varepsilon, 1}, \cdots$, $\hat{\gamma}(\xi) \lambda_{\varepsilon, m}$ respectively.
3.3. Taking b conveniently, there exists a positive constant c_{1} such that

$$
\begin{equation*}
\operatorname{Re} \lambda_{1}^{(1)} \geqq c_{1} \quad \text { and } \quad \operatorname{Re} \lambda_{1}^{(2)} \leqq-c_{1} \tag{18}
\end{equation*}
$$

3.4. Denote the Vandermonde matrix with respect to $\left\{\lambda_{\varepsilon}, j\right\}_{j=1}^{m}$ by $\sigma\left(\Re_{1}\right)$. Define $\sigma(\Re)$ by

$$
\sigma(\mathfrak{N})=\hat{\gamma}(\xi)|\xi|^{-1 / 2} E \cdot \sigma\left(\mathscr{I}_{1}\right)^{-1}
$$

where E is the $m \times m$ unit matrix. Then $\sigma(\mathscr{N})$ defines a singular integral operator \mathfrak{N} which diagonalize $\mathscr{G}=\mathscr{H}_{0}+\mathscr{H}_{1}$ into

$$
\mathscr{D}=\left[\begin{array}{cc}
R_{\varepsilon, 1} & 0 \\
& \ddots \\
& \\
0, & R_{\varepsilon, m}
\end{array}\right]
$$

modulo bounded operators in $L^{2}: \sigma(\mathscr{N}) \sigma(\mathscr{H})=\sigma(\mathscr{D}) \sigma(\mathscr{N})$. Using \equiv to denote equalities modulo bounded operators in L^{2}, we get

$$
\mathscr{N} \mathcal{H} \Lambda \equiv \mathscr{N} \circ \mathcal{H} \Lambda=\mathscr{D} \circ \mathscr{I} \Lambda \equiv \mathscr{D} \mathcal{D}^{\prime} \Lambda \equiv \mathscr{D} \Lambda \cap
$$

where $A \circ B$ means a singular integral operator whose symbol is $\sigma(A) \cdot \sigma(B)$. Then setting $W_{n}=\mathscr{N} V_{n}$, we get from (16) after the operation of \cap

$$
\frac{d}{d t} W_{n}=\mathscr{D} \Lambda W_{n}+\mathscr{N}^{\prime} V_{n}+B_{2} V_{n}+\mathscr{I} B_{1} V_{n}+\mathscr{I} F_{n}
$$

where \Re^{\prime} is the singular integral operator with the symbol $\sigma\left(\Re^{\prime}\right)$ $=-\frac{d}{d t} \sigma(\mathfrak{N})$.
3.5. Taking a positive constant K, we define $S_{n}(t)$ by

$$
S_{n}(t)=K\left\|W_{n}^{(1)}(t)\right\|_{L^{2}}^{2}-\sum_{j=2}^{m}\left\|W_{n}^{(j)}(t)\right\|_{L^{2}}^{2}
$$

We shall define the size of K later.
Now we can prove that $S_{n}(t)$ satisfies the following differential inequality:

$$
\begin{equation*}
\frac{d}{d t} S_{n}(t) \geqq c_{1} \sqrt{n} S_{n}(t)-c_{2}\left\|V_{n}\right\|_{L^{2}}^{2}-c_{3}\left\|F_{n}\right\|_{L^{2}}^{2}, \tag{19}
\end{equation*}
$$

where c_{1}, c_{2}, and c_{3} are constants independent of n. In fact, setting $G_{n}=B_{2} V_{n}+\mathfrak{N} B_{1} V_{n}+\mathfrak{N} F_{n}+\bigcap^{\prime} V_{n}$, we get

$$
\begin{aligned}
\frac{d}{d t} S_{n}(t)= & 2 K \operatorname{Re}\left(R_{\varepsilon, 1} W_{n}^{(1)}, W_{n}^{(1)}\right)+2 K \operatorname{Re}\left(G_{n}^{(1)}, W_{n}^{(1)}\right) \\
& -2 \sum_{j=2}^{m} \operatorname{Re}\left(R_{\varepsilon, j} W_{n}^{(j)}, W_{n}^{(j)}\right)-2 \sum_{j=2}^{m} \operatorname{Re}\left(G_{n}^{(j)}, W_{n}^{(j)}\right) .
\end{aligned}
$$

From this, (19) follows by (18) and Plancherel's equality.
4. Proof of Lemma. 4.1. We shall prove Lemma by a contradiction. (1°) First we assume that the Cauchy problem for (7) is well posed in L^{2} sense. Then the energy inequality holds:

$$
\begin{equation*}
E(t ; u) \leqq C E(o: u) \tag{20}
\end{equation*}
$$

where

$$
E(t: u)=\sum_{j=0}^{m-1}\left\|\left(\frac{\partial}{\partial t}\right)^{j} u(t)\right\|_{m-j-1} \cdot
$$

(2°) On the other hand, if the Cauchy problem for (7) with any initial data (5) has a solution (4) for arbitrary lower order term B, then taking B conveniently we can show that for any positive constant C there exists a solution of (7) which does not satisfy the energy inequality (20).
$\left(1^{\circ}\right)$ and (2°) are just contradictory consequences. (1°) is a simple consequence of Banach's closed graph theorem, therefore we only have to show (2°) to get our Lemma.
4.2. Now we shall show (2°). Let $\hat{\psi}(\xi) \in C_{\xi}^{\infty}$ be a function with a compact support and take the value 1 on the support of $\hat{\alpha}(\xi)$. Defining $\hat{\psi}_{n}(\xi)$ by $\hat{\psi}_{n}(\xi)=\hat{\psi}\left(\xi-(n-1) \xi_{0}\right)$, we denote the Fourier inverse image of $\hat{\psi}_{n}(\xi)$ by $\psi_{n}(x)$.

Using B defined in 3.3, we shall consider the Cauchy problem

$$
\left\{\begin{array}{l}
\left(L_{0}+B\right) u=0 \tag{21}\\
u(o)=\cdots=\left.\left(\frac{\partial}{\partial t}\right)^{m-2} u\right|_{t=0}=0,\left.\quad\left(\frac{\partial}{\partial t}\right)^{m-1} u\right|_{t=0}=\psi_{n}(x)
\end{array}\right.
$$

in L^{2} sense. Denote the solution of (21) by $u_{n}(x, t)$:

$$
u_{n}(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{D}_{L^{2}}^{m-1}\right) \cap \cdots \cap \mathcal{E}_{t}^{m-1}\left(L^{2}\right), \quad 0 \leqq t \leqq T
$$

Replacing U in (9) by $U_{n}={ }^{t}\left(u_{n}, \cdots,\left(\frac{\partial}{\partial t}\right)^{m-1} u_{n}\right)$, the same reasoning as in the paragraph 3 guarantee (19) for U_{n}.

Now we assume that $u_{n}(x, t)$ satisfies the energy inequality (20). Then it follows that

$$
\begin{equation*}
\left\|V_{n}\right\| \leqq C,\left\|F_{n}\right\| \leqq C^{\prime}, \quad \text { and } \quad S_{n}(t) \leqq C^{\prime \prime} \tag{22}
\end{equation*}
$$

where C, C^{\prime}, and $C^{\prime \prime}$ are constants independent of n. Using (22) we get from (19)

$$
\begin{equation*}
\frac{d}{d t} S_{n}(t) \geqq c_{1} \sqrt{n} S_{n}(t)-c_{2} \tag{23}
\end{equation*}
$$

where c_{1} and c_{2} are constants independent of n. Integrating (23) by t and taking the last term of (22) into account, we get

$$
C \geqq S_{n}(t) \geqq e^{c_{1} \sqrt{n} t} S_{n}(o)+\frac{c_{2}}{c_{1} \sqrt{n}}\left(1-e^{c_{1} \sqrt{n} t}\right) .
$$

In addition, taking K suitably we can prove that

$$
\begin{equation*}
S_{n}(o) \geqq c>0 \tag{24}
\end{equation*}
$$

holds for some constant c. In the sequel

$$
C \geqq S_{n}(t) \geqq c e^{c_{1} \sqrt{n} t}+\frac{c_{2}^{\prime}}{c_{1} \sqrt{n}}\left(1-e^{c_{1} \sqrt{n} t}\right)
$$

This is an apparent contradiction as n tends to infinity, and (2°) is proved.

References

[1] Mizohata, S.: Some remarks on the Cauchy problem. J. Math. Kyoto Univ., 1, 109-127 (1961).
[2] Vishik, M. I., and Lyusternik, L. A.: The solution of some perturbation problem for matrices and selfadjoint or non-selfadjoint differential equations. I., Russian Math. Survey (1960).

