138. Closures and Neighborhoods in Certain Proximity Spaces

By Eiichi Hayashi
Nagoya Institute of Technology
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1967)

In the paper [1], we defined a binary relation δ, called a paraproximity, for a pair of subsets of a point set R. We there proved that a paraproximity yields a completely normal space ([1] Theorem 1). Further we showed that, for a pair of subsets A and B of a paraproximity space $R,(A, B) \in \delta$ implies $A \cap \bar{B} \neq \varnothing$ ([1] Theorem 2). In the present paper we show that the converse of Theorem 2 holds. Hence a paraproximity structure which is compatible with the topology is uniquely determined. The remaining parts of this paper are devoted to the study of the neighborhood.

First we restate the definition of a paraproximity. By a paraproximity on a set R we mean a binary relation δ for pairs of subsets of R satisfying the following axioms:

Axiom (1). For every $A \subset R,(A, \varnothing) \notin \delta$, and $(\varnothing, A) \notin \delta$. (We add the latter condition $(\varnothing, A) \notin \delta$ to Axiom (1) of [1].)

Axiom (2). $\quad(A, B \cup C) \in \delta$ if and only if either $(A, B) \in \delta$ or $(A, C) \in \delta$.

Axiom (3). For an arbitrary index set $\Lambda,\left(\cup_{\lambda \in \Lambda} A_{\lambda}, B\right) \in \delta$ if and only if there exists an index $\mu \in \Lambda$ satisfying the relation $\left(A_{\mu}, B\right) \in \delta$.

Axiom (4). For arbitrary two points $a, b \in R,(\{a\},\{b\}) \in \delta$ if and only if $a=b$.

Axiom (5). If $(A, B) \notin \delta$ and $(B, A) \notin \delta$, then there exist two disjoint subsets U and V satisfying:

$$
\begin{array}{ll}
(A, R-U) \notin \delta, & (U, R-U) \notin \delta: \\
(B, R-V) \notin \delta, & (V, R-V) \notin \delta .
\end{array}
$$

We note that the next lemma (Steiner [3]) follows from Axiom (3).

Lemma 1. $(A, B) \in \delta$ if and only if $(\{x\}, B) \in \delta$ for some x in A.
Lemma 2. If $(\{x\}, A) \notin \delta$ then $(A,\{x\}) \notin \delta$.
Proof. If $(\{x\}, A) \notin \delta$, then $x \notin A$ by [1, Lemma 3]. Suppose that $(A,\{x\}) \in \delta$. Then, by Lemma 1, there is a point a in A such that $(\{a\},\{x\}) \in \delta$. From Axiom (4) follows $a=x$ which is a contradiction.

1. Let R be a set with a paraproximity δ. A set $B \subset R$ is said to be a paraproximal neighborhood of a set $A \subset R$ (notation:
$A \subset B)$ if and only if $(A, R-B) \notin \delta$. (cf. Y. M. Smirnov [2].)
Lemma 3. The relation \subseteq satisfies the following conditions:
(1) $R \subset R, \varnothing \subset \varnothing$.
(2) $A \subset B \subset C \subset D$ implies $A \subset D$.
(3) $A \Subset B_{i}, \mathrm{i}=1,2, \cdots, n$, if and only if $A \Subset \bigcap_{i=1}^{n} B_{i}$.
(4) For any index set $\Lambda, \cup_{i \in 1} A_{\lambda} \subset B$ if and only if $A_{\lambda} \subset B$ for every λ.
(5) $x \Subset R-\mathrm{y}$ if and only if $x \neq y$.
(6) If $\mathrm{A} \subset R-B$ and $B \subset R-A$ then there are two disjoint subsets U and V such that $U \subset U, V \subset V, A \Subset U$, and $B \Subset V$.

Proof. (1) follows from Axiom (1). To prove (2), assume that $A \subset B \subset C \subset D$. Then $(B, R-C) \notin \delta$ and hence from [1, Lemma 1 and 2] $(A, R-D) \notin \delta$, which implies $A \Subset D$. (3) is established by repeated application of Axiom (2). If $\cup_{\lambda \in 1} A_{\lambda} \Subset B$, then by (2), $A_{\lambda} \Subset B$ for every 2 . The converse implication of (4) is obvious from Axiom (3), (5), and (6) evidently follow from Axiom (4) and (5) respectively.

Theorem 1. Let a relation \subseteq satisfying the conditions (1)(6) of Lemma 3, be defined on the family of subsets of R. Then δ, defined by $(A, B) \in \delta$ if and only is $A \Subset \equiv R-B$, is a paraproximity on R.

Proof. We must show that δ as defined in terms of the relation \subset, satisfies Axiom (1)-(5). For every $A \subset R$, we have from Lemma 3 (1) and (2), that $A \subset R$ and hence $(A, \varnothing) \notin \delta$. Similarly we have that $(\varnothing, A) \notin \delta$. Thus Axiom (1) holds. To prove Axiom (2), let $(A, B \cup C) \in \delta$. Then $A \Subset \equiv R-(B \cup C)=(R-B) \cap(R-C)$. Assume, on the contrary, that $A \subset R-B$ and $A \Subset R-C$. Then from Lemma 3 (3), we have that $A \Subset(R-B) \cap(R-C)$, which is impossible. Therefore $A \Subset \equiv R-B$ or $A \Subset \equiv R-C$. This proves "only if" part of Axiom (2). "if" part of Axiom (2) also follows from (3) in Lemma 3. Axioms (3), (4), and (5) are derived from (4), (5), and (6) in Lemma 3 respectively.

Moreover, paraproximal neighborhoods have the following properties:

Theorem 2.
(1) $A \subset B$ implies $A \subset B$.
(2) If $A_{i} \subset B_{i}, i=1,2, \cdots n$, then $\bigcap_{i=1}^{n} A_{i} \subset \bigcap_{i=1}^{n} B_{i}$ and $\bigcup_{i=1}^{n} A_{i}$ $\subseteq \bigcup_{i=1}^{n} B_{i}$.
(3) Let A be a subset of R and x a point of R. Then $x \Subset R-A$ implies $A \Subset R-x$.
(4) For every point $x, R-x \Subset R-x$.
(5) $A \subset B$ implies the existence of a set $U \subset R$ such that $A \Subset U \Subset B$ and $U \Subset U$.
(6) $A \Subset B$ implies the existence of sets U and $V \subset R$ such that
$A \Subset U \Subset V \Subset B, U \Subset U$, and $V \subset V$.
Proof. To prove (1), let $A \subset B$. By definition, it follows that $(A, R-B) \notin \delta$ and so $A \cap(R-B)=\varnothing$ from [1, Lemma 3]. We show that (2) holds in the case of $n=2$. Let $A_{i} \Subset B_{i}$, that is, $\left(A_{i}, R-B_{i}\right)$ $\notin \delta, i=1,2$. Then by [1, Lemma 2], we have $\left(A_{1} \cap A_{2}, R-B_{i}\right)$ $\notin \delta(i=1,2)$ and so $\left(A_{1} \cap A_{2}, R-\left(B_{1} \cap B_{2}\right)\right) \notin \delta$ from Axiom (2). It follows that $A_{1} \cap A_{2} \subset B_{1} \cap B_{2}$. Assume again that $A_{i} \in B_{i}(i=1,2)$. Since $\left(A_{i}, R-B_{i}\right) \notin \delta(i=1,2)$, we have $\left(A_{1}, R-\left(B_{1} \cup B_{2}\right)\right) \notin \delta$ and (A_{2}, $\left.R-\left(B_{1} \cup B_{2}\right)\right) \notin \delta$ and hence $A_{1} \cup A_{2} \Subset B_{1} \cup B_{2}$. (3) and (4) are immediate consequences of Lemma 2 and [1, Lemma 4], respectively.

To establish (5), assume that $A \subset B$, that is, $(A, R-B) \notin \delta$. From [1, Lemma 2], $(\{x\}, R-B) \notin \delta$ for every x in A and hence ($R-B,\{x\}) \notin \delta$ by Lemma 2. On account of Axiom (5), there exist two disjoint subsets U_{x} and $V_{x}(x \in \mathrm{~A})$ such that $x \in U_{x}, U_{x} \Subset U_{x}$, $R-B \Subset V_{x}$, and $V_{x} \Subset V_{x}$. Put $U=\bigcup_{x \in A} U_{x}$. From Lemma 3(2) we have $x \Subset U$ since $x \Subset U_{x} \subset U$ for every $x \in A$. Hence by Lemma 1, $(A, R-U) \notin \delta$ so that $A \Subset U$. Since $U_{x} \subset U_{x} \subset U$, from Lemma 3(2) we have $U_{x} \subset U$ for every $x \in A$. By Lemma 3(4), $U_{x \in A} U_{x} \subset U$ and hence $U \subseteq U$. Further since $U_{x} \cap V_{x}=\varnothing$ and $R-B \subset R-U_{x}$ for every $x \in A$, we have $U \subset B$. Since $U \subset U \subset B$, it follows from Lemma 3 (2) that $U \Subset B$. Consequently U is the required set. (6) follows from a twofold application of (5).
3. Let R be a set and δ a paraproximity on R. For $A \subset R$, we set $(*) c(A)=\{x: x \in R,(\{x\}, A) \in \delta\}$.

Lemma 4. For $U \subset R, U \Subset U$ if and only if $c(R-U)=R-U$.
Proof. Suppose that $U \Subset U$ i.e. $(U, R-U) \notin \delta$. Then it follows from [1, Lemma 2] that for every $x \in U,(\{x\}, R-U) \notin \delta$ and so $x \notin c(R-U)$. Therefore we have $c(R-U) \subset R-U$. For every $x \in R-U$, we have $(\{x\}, R-U) \in \delta$ by [1, Lemma 3] and hence $x \in c(R-U)$. Consequently $c(R-U)=R-U$.

To show the converse, assume that $c(R-U)=R-U$ and that $U ₫ \equiv U$. Then by Lemma 1 , there is an $x \in U$ such that $(\{x\}, R-U) \in \delta$. Hence $x \in c(R-U)=R-U$, which is impossible. This completes the proof of Lemma.

Lemma 5. The operator c defined by (*) satisfies the Kuratowski closure axioms.

Proof. (1) $c(\varnothing)=\varnothing$: Assume $x \in c(\varnothing)$, so that $(\{x\}, \varnothing) \in \delta$. This is impossible on account of Axiom (1).
(2) $A \subset B$ implies $c(A) \subset c(B)$: This is an immediate consequence of [1, Lemma 1].
(3) $c(A \cup B) \subset c(A) \cup c(B)$ follows from Axiom (2).
(4) $A \subset c(A)$: If x is an arbitrary point of A, then $c(x) \subset c(A)$ by (2). On account of Axiom (4), we have $(\{x\},\{x\}) \in \delta$ and hence
$x \in c(x)$, from which it follows that $x \in c(A)$ and that $A \subset c(A)$.
(5) $c c(A) \subset c(A)$: We assume that $x \notin c(A)$. Then $(\{x\}, A) \notin \delta$ implies $(A,\{x\}) \notin \delta$ from Lemma 2. By Axiom (5), we can find two disjoint sets U and V such that $A \subset U, U \subset U, x \in V$, and $V \subset V$. It follows from (2) and Lemma 4 that $c(A) \subset c(R-V)=R-V$. Using again (2) and Lemma 4, we have $c c(A) \subset R-V \nexists x$. This ends the proof of (5).
(6) $x=c(x)$ follows from Axiom (4).

The operator c is called a paraproximal closure operator (or simply closure operator . The set R topologized by Lemma 5 is called a paraproximity space (R, δ, c). Lemma 4 implies that $U \subset R$ is open if and only if $U \in U$.

Theorem 3. Let (R, δ, c) be a paraproximity space. For A, $B \subset R$, the following statements are equivalent.
(1) $(A, B) \in \delta$.
(2) $A \cap c(B) \neq \varnothing$.
(3) $A \Subset R-B$.

Proof. The equivalence of (1) and (3) follows from our definition. It suffices to show the equivalence of (1) and (2). If $(A, B) \in \delta$ then by Lemma 1 there exists a point x in A such that $(\{x\}, B) \in \delta$. Hence $A \cap c(B) \neq \varnothing$. Conversely, assume that $x \in A \cap c(B)$. Then ($\{x\}, B) \in \delta$ and so $(A, B) \in \delta$ from [1, Lemma 2].

Corollary. $A \subset B$ implies $A \subset i n t B \subset B$. (int B denotes the interior of B.)

Proof. Since int $B=R-c(R-B)$ by definition, we have int $B \cap c(R-B)=\varnothing$. It follows from Theorem 3 that int $B \subset B$. To prove that $A \subset \operatorname{int} B$, assume $A \subset B$. Since $A \cap c(R-B)=\varnothing$ and $c(R-B)=R-\operatorname{int} B$, we have that $A \cap c(R-\operatorname{int} B)=A \cap(\mathrm{R}-\operatorname{int} B)$ $=\varnothing$. By Theorem 3, this implies $A \subset \operatorname{int} B$.

By using Theorem 3 we can simplify the proof of the following [1, Theorem 1].

Theorem 4. The paraproximity space (R, δ, c) is completely normal.

Proof. As previously showed (Lemma 5), R is a T_{1}-space. It suffices to prove that R satisfies the T_{5} axiom of separation. Let A and B be separated in R (i.e. $A \cap c(B)=\varnothing$ and $B \cap c(A)=\varnothing)$. By Theorem 3, this implies $(A, B) \notin \delta$ and $(B, A) \notin \delta$. Therefore by virture of Axiom (5), there exist disjoint open sets U and V such that $A \subset U$ and $B \in V$.

References

[1] E. Hayashi: On some properties of a proximity. J. Math. Soc. Japan, 16, 375-378 (1964).
[2] Y. M. Smirnov: On proximity spaces. Mat. Sbornik, 73, 543-574 (1952) (in Russian). Amer. Math. Soc. Translations Ser. II, 38, 5-35.
[3] E. F. Steiner: The relation between quasi-proximities and topological spaces. Math. Ann., 155, 194-195 (1964).

