134. On Some Classes of Operators. I

By I. ISTRĂTESCU*) and V. ISTRĂTESCU**) (Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1967)

Introduction. Generalizing the concept of normality, several authors have introduced classes of non-normal operators.

Thus, one of these classes is the class of hyponormal operators of P. Halmos [1]. In the paper [2] it was introduced a new class of operators generalizing hyponormal operators.

It is the aim of this Note to introduce a new class of operators which generalizes the class of operators of class (N) of [2] and give some properties. The definition and some properties has sense also for operators on Banach spaces, however we consider only Hilbert spaces operators.

1. Let T be a bounded linear operator on a Hilbert space H. The operator is of class (N) if

$$x \in H$$
, $||x|| = 1$, $||Tx||^2 \le ||T^2x||$.

This definition suggests the following

Definition 1. The operator T is of class (N) and order k if $x \in H$, ||x|| = 1 $||Tx||^k \le ||T^kx||$.

We write this as $T \in \mathcal{C}(N, k)$. It is clear that the operators of class (N) is $\mathcal{C}(N, 2)$.

Theorem 1. If $T \in C(N, k)$, then the spectral radius of T, γ_T is equal to ||T||.

Proof. By definition there exists a sequence $\{x_n\}$, $||x_n||=1$ such that

$$||Tx_n|| \rightarrow ||T|| = 1.$$

(We may suppose, without loss of generality that ||T||=1.) Since, for every x, ||x||=1,

$$|| Tx ||^k \le || T^k x ||$$

we have

$$\lim ||T^k x_n|| = 1$$

This leads, also, to

$$\lim ||T^j x_n|| = 1 \qquad 1 \leqslant J \leqslant K.$$

Since

$$\mid\mid T^{k+1}x\mid\mid = \left \| T^{k} \frac{Tx}{\mid\mid Tx\mid\mid} \right \|\mid\mid Tx\mid\mid \geqslant \mid\mid T^{2}x\mid\mid^{k} \frac{1}{\mid\mid Tx\mid\mid^{k-1}}$$

If we put in this inequality, $x = x_n$ we obtain

^{*)} Institute of Mathematics Romanian Academy, Bucharest, str. M. Eminescu 47.

^{**)} Polytechnic Institute, Timișoara, Romania.

$$\lim ||T^{k+1}x_n|| = 1.$$

Also, if

$$\lim ||T^p x_n|| = 1 \qquad p \leqslant l$$

then

$$\lim ||T_{x_n}^{l+1}|| = 1.$$

 $\lim_{x_n} || \ T_{x_n}^{l+1} || = 1.$ This is the consequence of the inequality

$$||T^{l+1}x|| = ||T^kT^{l+1-k}x|| = ||T^k\frac{T^{l+1-k}}{||T^{l+1-k}x||}|||T^{l+1-k}x|| \ge ||T^{l+2-k}x||^{k}||T^{l+1-k}x||^{k-1}.$$

By an induction argument, we obtain that for every j

$$\lim ||T^{j}x_{n}|| = 1.$$

This proves the theorem.

Corollary 1. Every operator in C(N, k) is normaloid in the sense of A. Wintner $\lceil 6 \rceil$.

Theorem 2. If T is of class (N) then $T \in C(N, k)$ with $k \ge 2$.

Proof. For k=2 this is trivial. Suppose now, that the assertion is true for all $1, 2, \dots, J$ and then we prove that it is true for J+1.

Since T is of class (N) we have $\lceil 5 \rceil$

$$||TJ^{+1}x||^2\geqslant ||T^jx||^2||T^2x||\geqslant ||Tx||^{2j}||T^2x||\geqslant ||Tx||^{2(j+1)}$$

and an induction argument completes the proof of the theorem.

(In $\lceil 5 \rceil$ the class of operators of class (N) is called paranormal operators).

In $\lceil 2 \rceil \lceil 3 \rceil$ were given some structure theorems about operators of class (N) or hyponormal.

In the same way, as in $\lceil 3 \rceil$ we prove the following

Theorem 3. Let T be an operator in C(N, k) such that $T^{*_{p_1}}T^{q_1}\cdots T^{*_{p_m}}T^{q_m}$ is completely continuous for some non-negative integers $p_1, q_1, \dots, p_m, q_m$. Then T is necessarily a normal operator.

In the paper that will follow we shall give new properties of these classes of operators.

References

- [1] P. Halmos: Normal dilations and extensions of operators. Summa Brasil Math., 2, 124-134 (1950).
- [2] V. Istrătescu: On some hyponormal operators. Pacif. J. Math., 22 (2) (1967).
- [3] V. Istrătescu, T. Saitô, and T. Yoshino: On a class of operators. Tôhoku Math. J., **18**, 410-413 (1966).
- [4] V. Istrătescu: On operators of class (N) (to appear).
- [5] T. Furuta: On the class of paranormal operators (to appear).
- [6] A. Wintner: Theorie der beschränkten Biliniärformen. Math. Zeit., 30, 228-282 (1929).