131. The Continuity and the Boundedness of Linear Functionals on Linear Ranked Spaces

By Masako WASHIHARA

Kyoto Industrial University

(Comm. by Kinjiro KUNUGI, M.J.A., Sept. 12, 1967)

1. The definition of a bounded set and its properties. Let E be a linear ranked space, by which name we mean a linear space where \mathfrak{B}_n are defined and satisfy axioms (A), (B), (a), (b), (1), (2), (3),¹⁾

Definition 1. A subset B in E is called bounded if, for arbitrary n, there is an m, $m \ge n$, and a $V \in \mathfrak{B}_m$ which absorbs B.

Evidently the subset of a bounded set is also bounded. A set consisting of only one point is bounded (cf. axiom (3)).

The linear sum and the union of bounded sets are bounded, too. In fact, let A and B be bounded. For arbitrary n, we can choose an M such that, if $\lambda \ge M$, $\mu \ge M$, then $\phi(\lambda, \mu) \ge n$. Since A and B are bounded, there are $m_1 \ge M$, $m_2 \ge M$, $V_1 \in \mathfrak{B}_{m_1}$, $V_2 \in \mathfrak{B}_{m_2}$ and $\rho_1 > 0$, $\rho_2 > 0$ with $\rho_1 A \subseteq V_1$, $\rho_1 B \subseteq V_2$. Let $\rho = \min.(\rho_1, \rho_2)$. Then

 $\rho(A+B) \subseteq V_1 + V_2, \qquad \rho(A \cup B) \subseteq V_1 \cup V_2 \subseteq V_1 + V_2.$ Applying (1) for V_1, V_2, E , there exist an $m \ge \phi(m_1, m_2)$, a $V \in \mathfrak{B}_m$ such that $V_1 + V_2 \subseteq V$. Thus we get an $m \ge n$ and a $V \in \mathfrak{B}_m$ which absorbs A+B and $A \cup B$, and therefore they are bounded.

From the properties just proved, it follows that a finite set is bounded.

Proposition 1. If $\{\lim x_n\} \neq \phi$, then the set $\{x_n\}$ is bounded (i.e. the convergent sequence makes a bounded set).

Proof. We may assume $\{\lim x_n\} \ni 0$. In fact, $\{\lim x_n\} \ni x$ is equivalent to $\{\lim(x_n-x)\} \ni 0$. If we show that $\{x_n-x\}$ is bounded, we can assert that $\{x_n\} = \{x_n-x\} + \{x\}$, a linear sum of two bounded sets, is bounded. Let $\{\lim x_n\} \ni 0$. Then there exists a sequence $\{V_n\}$ such that

 $V_n \in \mathfrak{V}_{\alpha_n}, \alpha_n \uparrow \infty, V_n \supseteq V_{n+1}, x_n \in V_n (n=1, 2, \cdots)$ For arbitrary given N, we can choose an n_0 such that,

 $\phi(m, \alpha_n) \ge N$ for $m \ge n_0, n \ge n_0$.

Let us denote the set $\{x_n\}$ by A, and let $A = A_1 \cup A_2$, where $A = \{x_n; 1 \le n \le n_0 - 1\}$, $A_2 = \{x_n; n \ge n_0\}$. Then, $A_2 \subseteq V_{n_0}$. On the other hand, since A_1 is finite and therefore bounded, there is an $m \ge n_0$, a $V \in \mathfrak{B}_m$, and a $\rho > 0$ with $\rho A_1 \subseteq V$.

Let $\rho' = \min(\rho, 1)$. Then, $\rho A = \rho'(A_1 \cup A_2) \subseteq V \cup V_{n_0} \subseteq V + V_{n_0}$.

¹⁾ M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43, 584-589 (1967).

Applying axiom (1) for V, V_{n_0}, E , we get an $n \ge \phi(m, \alpha_{n_0})$ and a $W \in \mathfrak{B}_n$ such that $V + V_{n_0} \subseteq W$. Thus we have an $n \ge N$ and a $W \in \mathfrak{B}_n$ which absorbs A. Our assertion is proved.

Now, we introduce one new axiom.

(*1) If both $U \in \mathfrak{V}_m$ and $V \in \mathfrak{V}_n$ absorbs a set B, there exists an $l \ge \max(m, n)$, and a $W \in \mathfrak{V}_l$ which is included in U, V, and absorbs B.

As is easily seen, if E satisfies (*),²⁾ $(*_1)$ is also fulfilled.

Proposition 2. When E satisfies $(*_1)$, for any bounded sequence $\{x_n\}$ and for any sequence $\{\varepsilon_n\}$ with $\varepsilon_n \rightarrow 0$, we have $\{\lim \varepsilon_n x_n\} \ni 0$.

Proof. Let $A = \{x_n\}$. Since A is bounded, there is an $n_1 > 1$, a $V_1 \in \mathfrak{B}_{n_1}$ and a $\rho_1 > 0$ with $\rho_1 A \subseteq V_1$.

Next, we can find an $n'_2 > n_1$, a $V'_2 \in \mathfrak{B}_{n'_2}$, and a $\rho'_2 > 0$ with $\rho'_2 A \subseteq V'_2$. On account of $(*_1)$, there is an $n_2 \ge n'_2$, a $V_2 \in \mathfrak{B}_{n_2}$ with $V_2 \subseteq V_1 \cap V'_2$, and a $\rho_2 > 0$ such that $\rho_2 A \subseteq V_2$.

Continuing this process, we get sequences $\{n_i\}, \{V_i\}, \{\rho_i\}$ such that $n_i < n_{i+1}; V_i \in \mathfrak{R}^n_i, V_i \supseteq V_{i+1}; \rho_i > 0, \rho_i A \subseteq V_i$.

Since $\lim \epsilon_n = 0$, we can choose a sequence $\{N_i\}$ such that,

 $N_i < N_{i+1}; |\varepsilon_n| \le
ho_i ext{ for } n \ge N_i(i=1, 2, \cdots).$

Now, let $\alpha_n = n_i$, $U_n = V_i$ when $N_i \le n < N_{i+1}$ $(i=0, 1, 2, \cdots)$, where $N_0 = 1, n_0 = 0, V_0 = E$. Then, $U_n \in \mathfrak{B}_{\alpha_n}, U_n \supseteq U_{n+1}, \alpha_n \uparrow \infty$.

Moreover, since $|\varepsilon_n| < \rho_i$ for $n \ge N_i$,

$$arepsilon_n x_n \in arepsilon_n A = rac{arepsilon_n}{
ho_i} (
ho_i A) \subseteq rac{arepsilon_n}{
ho_i} V_i \subseteq V_i.$$

Therefore $\varepsilon_n x_n \in U_n$. Thus we have $\{\lim \varepsilon_n x_n\} \ni 0$.

Examples. In preceding paper, we gave three examples of linear ranked spaces; countably normed space \mathcal{O} , its dual \mathcal{O}' , Schwartz's space \mathfrak{D} . Now, let us show that in these spaces boundedness is equivalent to usual one, and the condition $(*_1)$ is valid.

Let *B* be a bounded set in our sense in the space \emptyset . Then, for each *n*, there is an $m \ge n$, and a $\rho > 0$ such that $\rho B \subseteq v(m; 0)$. (Note that \mathfrak{B}_m contains only one set v(m; 0).) Hence, for every $\varphi \in B$, $||\varphi||_n \le ||\varphi||_m < \frac{1}{\rho m}$, i.e. $\sup_{\varphi \in B} ||\varphi||_B < \infty$. Conversely, if for

each n, sup. $|| \varphi ||_n < \infty$, B is bounded in our sense.

Analogously, it is easily verified that a subset B in \mathfrak{D} is bounded if and only if the conditions,

1) there exists some K such that car. $\varphi \subseteq [-K, K]$ for every $\varphi \in B$,

2) for each $n, \sup_{\varphi \in B} \sup_{x} |\varphi^{(n)}(x)| < \infty \ (n = 0, 1, 2, \cdots),$ are ful-

²⁾ M. Washihara: loc. cit.

M. WASHIHARA

filled. (Note that, in \mathfrak{D} , a neighbourhood of 0 with rank n has the form $v(n, K; 0) = \{\varphi \in \mathfrak{D}; \operatorname{car.} \varphi \subseteq [-K, K], \max_{0 \le j \le n-1x} \sup |\varphi^{(j)}(x)| < \frac{1}{n}\}$).

Finally, a subset B in \mathscr{O}' is bounded if and only if, for some p, $B \subseteq \mathscr{O}'_p$ and $\sup_{f \in B} ||f||'_p < \infty$. In fact, the boundedness of B implies that for some $n \ge 1$ and for some p, v(n, p; 0) absorbs B. Therefore, there is a $\rho > 0$ such that, for every f in B, $||\rho f||'_p < \frac{1}{n}$, namely,

 $\sup_{f \in B} ||f||'_{p} \le \frac{1}{\rho n}.$ Conversely, if $\sup_{f \in B} ||f||'_{p} < \infty$, B can be absorbed by v(n, p; 0) for any n.

We know that both \mathcal{O} and \mathfrak{D} satisfy the condition (*), consequently the condition (*₁), too. To prove that (*₁) holds in \mathcal{O}' , let

 $U = v(m, p; 0), V = v(n, q; 0), \rho_1 > 0, \rho_2 > 0, \rho_1 B \subseteq U, \rho_2 B \subseteq V.$

We may assume $n \ge m$. Now, if $p \ge q$, then $V \subseteq U$, and therefore we can take V itself as W. On the other hand, if p < q, letting $W = v(n, p; 0), \rho = \frac{m\rho_1}{n}$, we have $W \in \mathfrak{B}_n, W \subseteq U \cap V$. In addition, for $f \in B$, since $\rho_1 f \in U, || \rho_1 f ||_p^{\prime} < \frac{1}{m}$, consequently $|| \rho f ||_p^{\prime} < \frac{\rho}{m\rho_1} = \frac{1}{n}$,

i.e. $\rho f \in W$. Hence, $\rho B \subseteq W$. Thus our assertion is proved.

2. The continuity and the boundedness of linear functionals. Definition 2. A linear functional f on a linear ranked space E is called continuous if $\{\lim x_n\} \ni 0$ implies $\lim f(x_n) = 0$. f is called bounded if for any bounded set B in E, sup. $|f(x)| < \infty$.

Proposition 3. Let E satisfy the condition $(*_1)$. If a linear functional f on E is continuous, f is bounded.

Proof. Suppose that f is not bounded. There exists a bounded set B such that $\sup_{x \in B} |f(x)| = \infty$. We can find a sequence $\{x_n\}$ in B with $|f(x_n)| > n$ $(n = 1, 2, \dots)$. From Proposition 2, $\{\lim \frac{1}{n} x_n\} \ni 0$, while $f(\frac{1}{n} x_n) \not\rightarrow 0$. Hence f is not continuous.

The converse of this proposition is valid if E satisfies following condition:

(4) There exists a non-negative function $\chi(\lambda, \mu)$ defined for $\lambda \ge 0, \mu \ge 1$, and the following holds; if $U \in \mathfrak{B}_m, V \in \mathfrak{B}_n, U \subseteq V$, and $m \ge \chi(n, k)$, then $kU \subseteq V$. To prove this, we need following lemma.

Lemma. Let E satisfy (4). If $\{\lim x_n\} \ni 0$, there exists a sequence of positive numbers $\{M_n\}$ such that $M_n \uparrow \infty$, and $\{\lim M_n x_n\} \ni 0$.

Proof. From hypothesis there is a sequence $\{V_n\}$ such that

 $V_n \in \mathfrak{B}_{\alpha_n}, \ V_n \supseteq V_{n+1}, \ \alpha_n \uparrow \infty, \ x_n \in V_n.$

First, we choose an $n_1 > 1$, such that $\alpha_{n_1} \ge \chi(\alpha_1, 2), \alpha_1 < \psi(\alpha_{n_1}, 2)$.

(This is possible because $\lim_{n\to\infty} \psi(\alpha_n, 2) = \infty$.) Since $V_{n_1} \in \mathfrak{B}^{\alpha}_{n_1}$, $V_1 \in \mathfrak{B}_{\alpha_1}$, $V_{n_1} \subseteq V_1$, from (4), we have $2V_n \subseteq V_1$.

Applying axiom (2) for $U = V_{n_1}$, $V = V_1$, $\alpha = 2$, there is a $\beta_1 \ge \psi(\alpha_{n_1}, 2)$ (consequently, $\beta_1 > \alpha_1$), and a $W_1 \in \mathfrak{B}_{\beta_1}$ with $2V_{n_1} \subseteq W_1 \subseteq V_1$.

Next, we choose an $n_2 > n_1$, such that $\alpha_{n_2} \ge \chi(\alpha_{n_1}, 2)$, $\beta_1 < \psi(\alpha_{n_2}, 4)$. From (4), $2V_{n_2} \subseteq V_{n_1}$, and therefore $4V_{n_2} \subseteq 2V_{n_1} \subseteq W_1$. Applying again axiom (2) for $U = V_{n_2}$, $V = W_1$, $\alpha = 4$, there is a $\beta_2 \ge \psi(\alpha_{n_2}, 4)$ (consequently, $\beta_2 > \beta_1$), and a $W_2 \in \mathfrak{B}_{\beta_2}$, with $4V_{n_2} \subseteq W_2 \subseteq W_1$.

Continuing this process, we get sequences $\{n_i\}, \{\beta_i\}, \{W_i\}$ such that

 $n_i < n_{i+1}, \beta_i < \beta_{i+1}; W_i \in \mathfrak{B}_{\beta_i}, W_i \supseteq W_{i+1}; 2^i V_{n_i} \subseteq W_i (i=0, 1, 2, \cdots)$ where $n_0 = 1, \beta_0 = \alpha_1, W_0 = V_1$.

Let $\gamma_n = \beta_i, U_n = W_i, M_n = 2^i$ when $n_i \le n < n_{i+1} (i = 0, 1, 2, \dots)$ Then,

 $U_n \in \mathfrak{B}_{\gamma_n}, \ U_n \supseteq U_{n+1}, \ \gamma_n \uparrow \infty, \ M_n x_n \in U_n(n=1, 2, \cdots)$

Hence $\{\lim M_n x_n\} \ni 0$, while $M_n \uparrow \infty$. Thus our assertion is proved.

Now, suppose that f is not continuous. Then there exists a sequence $\{x_n\}$ such that $\{\lim x_n\} \ni 0, f(x_n) \not\rightarrow 0$. Without loss of generality we can suppose that $|f(x_n)| \ge 1$. From the lemma just proved, there is a sequence $\{M_n\}$ such that $M_n \uparrow \infty$, $\{\lim M_n x_n\} \ni 0$. From Proposition 1, $\{M_n x_n\}$ is bounded, while, $|f(M_n x_n)| \ge M_n$ and therefore sup. $|f(M_n x_n)| = \infty$. Hence f is not bounded.

Thus, following proposition is proved.

Proposition 4. Let E satisfy (4). If a linear functional f on E is bounded, f is continuous.

We know that $(*_1)$ holds in \mathcal{O} , \mathfrak{D} , \mathcal{O}' . Let us prove that in these spaces (4) also holds. In any case, we may take $\chi(\lambda, \mu) = \lambda \mu$.

First, let U = v(m; 0), V = v(n; 0) and $U \subseteq V$, $m \ge n$ k. Then for each $\varphi \in U$

$$||K\varphi||_n \leq ||K\varphi||_m < \frac{K}{m} \leq \frac{1}{n}$$

therefore $k\varphi \in V$. Hence $kU \subseteq V$. Thus (4) holds in φ .

Next, let U=v(m, K; 0), V=v(n, L; 0), and $U\subseteq V, m\geq nk$. Then, necessarily, $K\leq L$. It is easily verified that $kU\subseteq V$. Thus \mathfrak{D} satisfies (4), too.

Finally, let U=v(m, p; 0), V=v(n, q; 0), and $U\subseteq V, m \ge nk$. Since $U\subseteq V, p\le q$. If $f\in U$, then $||kf||'_q\le ||kf||'_p<\frac{K}{m}\le \frac{1}{n}$, consequently, $kf\in V$. Hence $kU\subseteq V$. Thus Φ' also satisfies (4).