130 On Ranked Spaces and Linearity

By Masako Washihara

Kyoto Industrial University
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1967)
Let E be a linear space over the real or complex numbers, where defined families of subsets $\mathfrak{B}_{n}(n=0,1,2, \cdots$,$) which satisfy$ following conditions:
(A) For every V in $\mathfrak{B}, 0 \in V$ (where $\mathfrak{B}=\bigcup_{n=0}^{\infty} \mathfrak{B}_{n}$).
(B) For U, V in \mathfrak{B} there is a W in \mathfrak{B} such that $W \subseteq U \cap V$.
(a) For any U in \mathfrak{B} and for any integer n, there is an m such that $m \geq n$, and a V in \mathfrak{B}_{m} such that $V \subseteq U$.
(b) $E \in \mathfrak{B}_{0}$.

For each point x in E, we shall call $x+V$ a neighbourhood of x with rank n, when $V \in \mathfrak{B}_{n}$. Then E is a ranked space [1] with indicator ω_{0}. Furthermore, for any sequence $\left\{x_{n}\right\}$ in E, we have $\left\{\lim x_{n}\right\} \ni x[1]$ if and only if $\left\{\lim \left(x_{n}-x\right)\right\} \ni 0$. In fact, if $\left\{\lim x_{n}\right\} \ni x$, there exists a sequence of neighbourhoods of $x,\left\{v_{n}(x)\right\}$, such that

$$
v_{n}(x)=x+V_{n}, V_{n} \in \mathfrak{B}_{\alpha_{n}}, \alpha_{n} \uparrow \infty, v_{n}(x) \supseteq v_{n+1}(x), x_{n} \in v_{n}(x) .
$$

This implies that $V_{n} \supseteq V_{n+1}$, and therefore $\left\{\lim \left(x_{n}-x\right)\right\} \ni 0$. The converse is also obvious.

Now, we set following three axioms concerning the relation between the linear operations and the ranks of neighbourhoods.
(1) There exists a non-negative function $\phi(\lambda, \mu)$, defined for $\lambda \geq 0$ and $\mu \geq 0$, such that $\lim _{\lambda, \mu \rightarrow \infty} \phi(\lambda, \mu)=\infty$, and the following holds; if $U \in \mathfrak{B}_{l}, V \in \mathfrak{B}_{m}, W \in \mathfrak{B}_{n}, n \leq \phi(l, m)$, and $U+V \subseteq W$, then, there is an $n^{*} \geq \phi(l, m)$, and a $W^{*} \in \mathfrak{B}_{n^{*}}$ such that $U+V \subseteq W^{*} \subseteq W$.
(2) There exists a non-negative function $\psi(\lambda, \mu)$, defined for $\lambda \geq 0$ and $\mu \geq 1$ such that $\lim _{\lambda \rightarrow \infty} \psi(\lambda, \mu)=\infty$ for each fixed μ, and the following holds; let α be a scalar with $|\alpha| \geq 1$. If $U \in \mathfrak{B}_{m}, V \in \mathfrak{B}_{n}$, $\alpha U \subseteq V$, and $n \leq \psi(m,|\alpha|)$, then there is an $n^{*} \geq \psi(m,|\alpha|)$ and a $V^{*} \in \mathfrak{B}_{n^{*}}$ such that $\alpha U \subseteq V^{*} \subseteq V$.
(3) Let $U \in \mathfrak{B}$ and $x \in U$. Then for any n, there is an $m \geq n$, a $V \in \mathfrak{B}_{m}$ and some positive ρ such that $\rho x \in V \subseteq U$.

Moreover, we assume that every V in \mathfrak{B} is circled (i.e. if $x \in V$ and $|\alpha| \leq 1$, then $\alpha x \in V)$.

When E satisfies all these axioms, we can assert that
I. if $\left\{\lim x_{n}\right\} \ni x$ and $\left\{\lim y_{n}\right\} \ni y$, then $\left\{\lim \left(x_{n}+y_{n}\right)\right\} \ni x+y$.
II. if $\left\{\lim x_{n}\right\} \ni x$, then for any scalar $\lambda,\left\{\lim \lambda x_{n}\right\} \ni \lambda x$.
III. if $\lim \lambda_{n}=\lambda$ (where λ_{n}, λ are scalars), then for any x in E, $\left\{\lim \lambda_{n} x\right\} \ni \lambda x$.
I. means the continuity of addition. II. and III. mean the continuity (more precisely, the separate continuity) of scalar multiplication.

Proof. Since $\left\{\lim x_{n}\right\} \ni x$ if and only if $\left\{\lim \left(x_{n}-x\right)\right\} \ni 0$, it suffices to show that, respectively,
I^{\prime}. if $\left\{\lim x_{n}\right\} \ni 0$, and $\left\{\lim y_{n}\right\} \ni 0$, then $\left\{\lim \left(x_{n}+y_{n}\right)\right\} \ni 0$.
II'. if $\left\{\lim x_{n}\right\} \ni 0$, then for any $\lambda,\left\{\lim \lambda x_{n}\right\} \ni 0$.
III'. if $\lim \lambda_{n}=0$, then for any $x,\left\{\lim \lambda_{n} x\right\} \ni 0$.
Proof of I^{\prime}. From the hypothesis, there exist two sequences of neighbourhoods of $0,\left\{U_{n}\right\},\left\{V_{n}\right\}$, such that

$$
\begin{aligned}
& U_{n} \in \mathfrak{B}_{\alpha_{n}}, U_{n} \supseteq U_{n+1}, \alpha_{n} \uparrow \infty, x_{n} \in U_{n}(n=1,2, \cdots,) \\
& V_{n} \in \mathfrak{B}_{\beta_{n}}, V_{n} \supseteq V_{n+1}, \beta_{n} \uparrow \infty, y_{n} \in V_{n}(n=1,2, \cdots,)
\end{aligned}
$$

Taking U_{1}, V_{1}, E, respectively, as U, V, W, and applying (1), we get an integer $\gamma_{1}^{*} \geq \phi\left(\alpha_{1}, \beta_{1}\right)$ and a $W_{1}^{*} \in \mathfrak{B}_{\gamma_{1}^{*}}$ with $U_{1}+V_{1} \subseteq W_{1}^{*}$. Then, clearly, $x_{n}+y_{n} \in W_{1}^{*}$ for any n. Since $\lim _{n \rightarrow \infty} \phi\left(\alpha_{n}, \beta_{n}\right)=\infty$, we can choose an $n_{1}>1$, such that $\phi\left(\alpha_{n_{1}}, \beta_{n_{1}}\right)>\gamma_{1}^{\gamma_{1}^{*} .}$. As $U_{n_{1}}+V_{n_{1}} \subseteq U_{1}+V_{1}$ $\subseteq W_{1}^{*}$, we can apply again axiom (1) to $U_{n_{1}}, V_{n_{1}}, W_{1}{ }^{*}$, and find a $\gamma_{2}^{*} \geq \phi\left(\alpha_{n_{1}}, \beta_{n_{1}}\right)$ and a $W_{2}^{*} \in \mathfrak{B}_{i_{2}^{*}}$ with $U_{n_{1}}+V_{n_{1}} \subseteq W_{2}^{*} \subseteq W_{1}^{*}$. It is clear that $\gamma_{2}^{*}>\gamma_{1}^{*}$ and $x_{n}+y_{n} \in W_{2}^{*}$ for $n \geq n_{1}$.

Continuing this process, we obtain sequences of integers, $\left\{n_{i}\right\}$, $\left\{\gamma_{i}^{*}\right\}$, and a sequence of sets $\left\{W_{i}^{*}\right\}$ such that $n_{i}<n_{i+1}, \gamma_{i}^{*}<\gamma_{i+1}^{*}$; $W_{i}^{*} \in \mathfrak{B}_{\gamma_{i}^{*}}, W_{i}^{*} \supseteq W_{i+1}^{*}$, and $x_{n}+y_{n} \in W_{i}^{*}$ when $n_{i-1} \leq n(i=1,2, \cdots$,$) ,$ where $n_{0}=1$. Now, put $\gamma_{n}=\gamma_{i}^{*}, W_{n}=W_{i}^{*}$ when $n_{i-1} \leq n<n_{i}(i=1,2, \cdots$,$) .$ Then, $W_{n} \in \mathfrak{B}_{r_{n}}, W_{n} \supseteq W_{n+1}, \gamma_{n} \uparrow \infty, x_{n}+y_{n} \in W_{n}(n=1,2, \cdots$,$) . This$ means that $\left\{\lim \left(x_{n}+y_{n}\right)\right\} \ni 0$.

Proof of II'. From the hypothesis, we have a sequence $\left\{U_{n}\right\}$ such that

$$
U_{n} \in \mathfrak{B}_{\alpha_{n}}, U_{n} \supseteq U_{n+1}, \alpha_{n} \uparrow \infty, x_{n} \in U_{n} .
$$

If $|\lambda| \leq 1$, then $\lambda x_{n} \in U_{n}$ (because U_{n} is circled); therefore, we see at once $\left\{\lim \lambda x_{n}\right\} \ni 0$. Now, suppose $|\lambda|>1$. Applying axiom (2) to U_{1}, E, λ, there is a β_{1}^{*} and a $V_{1}^{*} \in \mathfrak{B}_{\beta_{1}^{*}}$ with $\lambda U_{1} \subseteq V_{1}^{*}$. Since $\lim _{n \rightarrow \infty} \psi\left(\alpha_{n},|\lambda|\right)=\infty$, we can choose an $n_{1}>1$ such that $\psi\left(\alpha_{n_{1}},|\lambda|\right)>\beta_{1}^{*}$. Applying again axiom (2) to $U_{n_{1}}, V_{1}^{*}$, and λ, there exist a $\beta_{2}^{*} \geq \psi\left(\alpha_{n_{1}},|\lambda|\right)$ and a $V_{2}^{*} \in \mathfrak{B}_{\beta_{2}^{*}}$ with $\lambda U_{n_{1}} \subseteq V_{2}^{*} \subseteq V_{1}^{*}$.

Continuing this process, we obtain sequences $\left\{n_{i}\right\},\left\{\beta_{i}^{*}\right\},\left\{V_{i}^{*}\right\}$ such that

$$
\begin{aligned}
& n_{i}<n_{i+1}, \beta_{i}^{*}<\beta_{i+1}^{*} ; V_{i}^{*} \in \mathfrak{B}_{\beta_{i}^{*}}, V_{i}^{*} \supseteq V_{i+1}^{*}, \\
& \text { and } \quad \lambda x_{n} \in V_{i}^{*} \quad \text { for } n \geq n_{i-1} .
\end{aligned}
$$

Putting $\beta_{n}=\beta_{i}^{*}, V_{n}=V_{i}^{*}$ for $n_{i-1} \leq n<n_{i}(i=1,2, \cdots$,) we have $V_{n} \in \mathfrak{B}_{\beta_{n}}, V_{n} \supseteq V_{n+1}, \beta_{n} \uparrow \infty, \lambda x_{n} \in V_{n} ;$ namely, $\left\{\lim \lambda x_{n}\right\} \ni 0$.

Proof of III'. First, by the axiom (3) (taking E as U, and 1 as n), there is an $\alpha_{1} \geq 1$, a $U_{1} \in \mathfrak{B}_{\alpha_{1}}$, and an $\varepsilon_{1}>0$ such that $\varepsilon_{1} x \in U_{1}$.

Next, applying again (3) to $U_{1}, \varepsilon_{1} x, \alpha_{1}+1$, we can find an $\alpha_{2}>\alpha_{1}$, $U_{2} \in \mathfrak{B}_{\alpha_{2}}$, and an $\varepsilon_{2}>0$ with $\varepsilon_{2} \varepsilon_{1} x \in U_{2} \subseteq U_{1}$. Thus, we get sequences $\left\{\alpha_{i}\right\},\left\{U_{i}\right\},\left\{\varepsilon_{i}\right\}$ such that

$$
\alpha_{i}<\alpha_{i+1}, U \in \mathfrak{B}_{\alpha_{i}}, U_{i} \supseteq U_{i+1}, \quad \text { and } \quad \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{i} x \in U_{i}
$$

As $\lim \lambda_{n}=0$, we can choose an increasing sequence of integers $\left\{n_{i}\right\}$ which satisfies that $\left|\lambda_{n}\right| \leq \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{i}$ for $n \geq n_{i}$. Hence, $\lambda_{n} x \in U_{i}$ for $n \geq n_{i}$.

Put $\beta_{n}=\alpha_{i}, V_{n}=U_{i}$ when $n_{i} \leq n<n_{i+1}(i=0,1,2, \cdots$,$) where n_{0}=1$, $\alpha_{0}=0, U_{0}=E$. Then we have
$V_{n} \in \mathfrak{B}_{\beta_{n}}, V_{n} \supseteq V_{n+1}, \beta_{n} \uparrow \infty, \lambda_{n} x \in V_{n}$; that is, $\left\{\lim \lambda_{n} x\right\} \ni 0$.
This completes our proof.
When the space E satisfies the condition
(*) if $U \in \mathfrak{B}_{l}, V \in \mathfrak{B}_{m}$, then $U \cap V \in \mathfrak{B}_{n}$, where $n \geq \max$. (l, m), axioms (1), (2), (3) can be replaced by simpler ones, (1^{\prime}), (2^{\prime}), (3^{\prime}): ${ }^{1)}$
(1^{\prime}) there exists a function $\phi(\lambda, \mu)$ such as ϕ in (1), and the following holds; for $U \in \mathfrak{B}_{l}, V \in \mathfrak{B}_{m}$, there is an $n \geq \phi(l, m)$, and a $W \in \mathfrak{B}_{n}$ such that $U+V \subseteq W$.
(2^{\prime}) there exists a function $\psi(\lambda, \mu)$ such as ψ in (2), and the following holds; for $U \in \mathfrak{B}_{m}$, and for a scalar α with $|\alpha| \geq 1$, there is an $n \geq \psi(m,|\alpha|)$ and a $V \in \mathfrak{B}_{m}$ such that $\alpha U \subseteq V$.
(3^{\prime}) for any integer n, and for any x in E, there is an $m \geq n$, a $V \in \mathfrak{B}_{m}$ and a $\rho>0$ such that $\rho x \in V$.

As is easily seen, $\left(1^{\prime}\right),\left(2^{\prime}\right),\left(3^{\prime}\right)$ are the consequences of (1), (2), (3), respectively. On the other hand, if (*) is satisfied, (1), (2), (3) follow from (1^{\prime}), (2^{\prime}), (3^{\prime}), respectively. For example, suppose (1^{\prime}), and let $U \in \mathfrak{B}_{l}, V \in \mathfrak{B}_{m}, W \in \mathfrak{B}_{n}, n \leq \phi(l, m)$ and $U+V \subseteq W$. By (1'), there is an $n^{\prime} \geq \phi(l, m)$ and a W^{\prime} such that $U+V \subseteq W^{\prime}$. On account of (*), $W \cap W^{\prime} \in \mathfrak{B}_{n^{*}}$, where $n^{*} \geq \max$. (n, n^{\prime}), and obviously, $U+V$ $\subseteq W \cap W^{\prime} \subseteq W$.

Examples. 1. Let Φ be a countably normed space [2]; i.e. a linear space where a sequence of compatible norms $\left\{\left\|\|_{n}\right\}_{n=1,2, \ldots}\right.$ is given, and convergence is defined as convergence with respect to each norm. These norms are assumed monotonously increasing.

Now, let $v(n ; 0)=\left\{\varphi \in \Phi \left\lvert\,\|\varphi\|_{n}<\frac{1}{n}\right.\right\}$ and let \mathfrak{B}_{n} consist of only one set $v(n ; 0) .^{2)} \quad$ Evidently, (A) holds. If $m \geq n$, then $v(n ; 0) \supseteq v(m ; 0)$ and therefore ($*$) is satisfied. It is easily verified that (1^{\prime}), (2^{\prime}), (3^{\prime})

[^0]are fulfilled, if we put
$$
\phi(\lambda, \mu)=\min .\left(\left[\frac{\lambda}{2}\right],\left[\frac{\mu}{2}\right]\right), \quad \psi(\lambda, \mu)=\left[\frac{\lambda}{\mu}\right] .
$$

Thus Φ satisfies all of our axioms.
Convergence of a sequence in Φ as a ranked space is equivalent to the usual convergence; we have $\left\{\lim \varphi_{i}\right\} \ni 0$, if and only if $\left\|\varphi_{i}\right\|_{n}$ $\rightarrow 0$ for every n. In fact, if $\left\{\lim \varphi_{i}\right\} \ni 0$, there is a sequence $\left\{V_{i}\right\}$ such that

$$
V_{i} \in \mathfrak{B}_{\alpha_{i}}, V_{i} \supseteq V_{i+1}, \alpha_{i} \uparrow \infty, \varphi_{i} \in V_{i} .
$$

For given n and for given $\varepsilon>0$, we can find some i_{0} such that, if $i \geq i_{0}$, then $\alpha_{i} \geq n$ and $\frac{1}{\alpha_{i}}<\varepsilon$
Since $V_{i_{0}} \in \mathfrak{B}_{\alpha_{i 0}}, V=v\left(\alpha_{i_{0}} ; 0\right)$. When $i \geq i_{0}, \varphi_{i} \in V_{i_{0}}$, consequently, $\left\|\varphi_{i}\right\|_{n}$ $\leq\left\|\varphi_{i}\right\|_{\alpha_{i_{0}}}<\frac{1}{\alpha_{i_{0}}}<\varepsilon$. This means that $\left\|\varphi_{i}\right\|_{n} \rightarrow 0$ for every n.
Conversely, suppose that $\left\|\varphi_{i}\right\|_{n} \rightarrow 0$ for any n. Then we can choose a sequence of integers $\left\{i_{n}\right\}$ such that

$$
i_{n}<i_{n+1} ;\left\|\varphi_{i}\right\|_{n}<\frac{1}{n} \quad \text { for } i \geq i_{n}(n=0,1,2, \cdots,) .
$$

Putting $\alpha_{i}=n, V_{i}=v(n ; 0)$, when $i_{n} \leq i<i_{n+1}(n=0,1,2, \cdots$,$) , we have$

$$
V_{i} \in \mathfrak{B}_{\alpha_{i}}, V_{i} \supseteq V_{i+1}, \alpha_{i} \uparrow \infty, \varphi_{i} \in V_{i} ; \text { i.e. }\left\{\lim \varphi_{i}\right\} \ni 0 .
$$

This completes our proof.
2. L. Schwartz defined the space \mathscr{D} [3], consisting of all infinitely differentiable functions with compact carrier, and convergence in it. Now, let

$$
v(n, K ; 0)=\left\{\varphi \in \mathscr{D}\left|\operatorname{car} . \varphi \subseteq[-K, K], \max _{o \leq j \leq n-1} \sup _{x} .\left|\varphi^{(j)}(x)\right|<\frac{1}{n}\right\}\right.
$$

and let \mathfrak{B}_{n} be the collection of all $v(n, K ; 0)$, where K is arbitrary positive number.

Obviously (A) holds. Moreover, it is easily seen that, if $n \leq m$ and $K \leq L$, then $v(m, K ; 0) \subseteq v(n, L ; 0)$, and that $v\left(n_{1}, K_{1} ; 0\right) \cap v\left(n_{2}, K_{2} ; 0\right)$ $=v(n, K ; 0)$, where $n=\max .\left(n_{1}, n_{2}\right), K=\min .\left(K_{1}, K_{2}\right)$. Hence (*) holds. Similarly as for Φ, we can see that ($\left(^{\prime}\right.$), (2^{\prime}), (3^{\prime}) are also fulfilled, putting $\mu \phi(\lambda, \mu)=\min$. $\left(\left[\frac{\lambda}{2}\right],\left[\frac{\mu}{2}\right]\right)$ and $\psi(\lambda, \mu)=\left[\frac{\lambda}{\mu}\right]$.

The convergence in \mathscr{D} as a ranked space is equivalent to that L. Schwartz defined; we have $\left\{\lim \varphi_{i}\right\} \ni 0$ if and only if there exists some K such that car. $\varphi_{i} \subseteq[-K, K]$ for every i, and for each fixed $n, \varphi_{i}^{(n)}(x)$ (and $\varphi_{i}(x)$ itself) converges to 0 uniformly in $[-K, K]$.
3. Let Φ be a countably normed space, and Φ^{\prime} be its dual (i.e. linear space consisting of all continuous linear functionals on Φ). It is known that Φ^{\prime} is the union of Φ_{n}^{\prime} where Φ_{n} is the completion
of Φ with respect to the norm $\left\|\|_{n}\right.$; in other words, for any f in Φ^{\prime}, there is some p such that $\|f\|_{p}^{\prime}<\infty$ (where $\|f\|_{p}^{\prime}=\sup _{\|\varphi\|_{p} \leq 1}|f(\varphi)|$). Moreover, since \| $\left\|_{n} \leq\right\|\left\|_{n+1},\right\|\left\|_{n}^{\prime} \geq\right\| \|_{n+1}^{\prime}$.

Now, let $v(n, p ; 0)=\left\{f \in \Phi_{p}^{\prime} \left\lvert\,\|f\|_{p}^{\prime}<\frac{1}{n}\right.\right\}$, and let \mathfrak{B}_{n} be the collection of $v(n, p ; 0), p=1,2, \cdots$. It is clear that, if $n \leq m$ and $p \leq q$, then $v(m, p ; 0) \subseteq v(n, q ; 0)$. Furthermore, we remark that, if $v(m, p ; 0)$ $\subseteq v(n, q ; 0)$, then necessarily $p \leq q$. In fact, suppose $p>q$. Then $\Phi_{p}^{\prime} \supseteq \Phi_{q}^{\prime}$. Since we can assume that any two norms $\left\|\|_{p}\right.$ and $\| \|_{q}$ are not equivalent, and therefore $\left\|\|_{p}^{\prime}\right.$ and $\| \|_{q}^{r}$ are not equivalent, we have $\Phi_{p}^{\prime} \supsetneq \Phi_{q}^{\prime}$. On the other hand, from $v(m, p ; 0) \subseteq v(n, q ; 0)$, $\Phi_{p}^{\prime} \subseteq \Phi_{q}^{\prime}\left(\right.$ because $\Phi_{p}^{\prime}=\bigcup_{m=1}^{\infty} v(m, p ; 0)$ and $\left.\Phi_{q}^{\prime}=\bigcup_{n=1}^{\infty} v(n, q ; 0)\right)$. This is a contradiction.

It is easily verified that (A), (B), (a) holds.
Let us show that (1) is satisfied, putting $\phi(\lambda, \mu)=\min .\left(\left[\frac{\lambda}{2}\right],\left[\frac{\mu}{2}\right]\right)$.
Let $U=v(l, p ; 0), V=v(m, q ; 0), W=v(n, r ; 0)$, and suppose

$$
U+V \subseteq W, n \leq \min .\left(\left[\frac{l}{2}\right],\left[\frac{m}{2}\right]\right)
$$

Then $U \subseteq W, V \subseteq W$, and by the remark above, we have $p \leq r, q \leq r$.
Putting $r^{*}=\max .(p, q), n^{*}=\min .\left(\left[\frac{l}{2}\right],\left[\frac{m}{2}\right]\right)$, and $W^{*}=v\left(n^{*}, r^{*} ; 0\right)$, we have $W^{*} \subseteq W$, because of $n^{*} \geq n$ and $r^{*} \leq r$. Moreover, let $f \in U$ and $g \in V$, then

$$
\|f+g\|_{r^{*}}^{\prime} \leq\|f\|_{r^{*}}^{\prime}+\|g\|_{r^{*}}^{\prime} \geq\|f\|_{p}^{\prime}+\|g\|_{q}^{\prime} \leq \frac{1}{l}+\frac{1}{m} \leq \frac{1}{n}
$$

Hence $U+V \subseteq W$.
Similarly, we can show that (2) and (3) also hold.
The convergence in Φ^{\prime} as a ranked space is equivalent to the strong convergence; we have $\left\{\lim f_{i}\right\} \ni 0$ if and only if, there exists some p with $f_{i} \in \Phi_{p}^{\prime}$ for every i, and $\left\|f_{i}\right\|_{p}^{\prime} \rightarrow 0$. In fact, if $\left\{\lim f_{i}\right\} \ni 0$, there is a sequence $\left\{V_{i}\right\}$, such that

$$
V_{i} \in \mathfrak{B}_{\alpha_{i}}, V_{i} \supseteq V_{i+1}, \alpha_{i} \uparrow \infty, f_{i} \in V_{i} .
$$

Let $V_{i}=v\left(\alpha_{i}, p_{i} ; 0\right)$. From $V_{i} \supseteq V_{i+1}$, we have $p_{i} \geq p_{i+1}$. Therefore, for every $i,\left\|f_{i}\right\|_{p_{1}}^{\prime} \leq\left\|f_{i}\right\|_{p_{i}}<\frac{1}{\alpha_{i}}$. This means that $f_{i} \in \Phi_{p_{1}}$, and $\left\|f_{i}\right\|_{p_{1}}^{\prime} \rightarrow 0$. Conversely, if $\left\|f_{i}\right\|_{p}^{\prime} \rightarrow 0$ for some p, then, we can show that $\left\{\lim f_{i}\right\} \ni 0$, in the similar way as for the convergence in Φ.

References

[1] K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).
[2] I. M. Gelfand and G. E. Shilov: Generalized functions, vol. 2. Spaces of fundamental functions and generalized functions. Moscow (1958).
[3] L. Schwartz: Théorie des distributions. Act. Sci. et Ind., Nr. 1091, 1092 (1950-1951).

[^0]: 1) Moreover, axiom (B) is the direct consequence of (*), and if none of \mathfrak{B}_{n} is empty, axiom (a) follows from (*).
 2) We put $\mathfrak{B}_{0}=\{\Phi\}$. In examples 2,3 , too, we take the whole space as an element of \mathfrak{B}_{0}.
