130 On Ranked Spaces and Linearity

By Masako WASHIHARA Kyoto Industrial University (Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1967)

Let *E* be a linear space over the real or complex numbers, where defined families of subsets $\mathfrak{B}_n(n=0, 1, 2, \dots)$ which satisfy following conditions:

(A) For every V in \mathfrak{B} , $0 \in V$ (where $\mathfrak{B} = \bigcup_{n=0}^{\infty} \mathfrak{B}_n$).

(B) For U, V in \mathfrak{V} there is a W in \mathfrak{V} such that $W \subseteq U \cap V$.

(a) For any U in \mathfrak{B} and for any integer n, there is an m such that $m \ge n$, and a V in \mathfrak{B}_m such that $V \subseteq U$.

(b) $E \in \mathfrak{B}_0$.

For each point x in E, we shall call x+V a neighbourhood of x with rank n, when $V \in \mathfrak{B}_n$. Then E is a ranked space [1] with indicator ω_0 . Furthermore, for any sequence $\{x_n\}$ in E, we have $\{\lim x_n\} \ni x$ [1] if and only if $\{\lim (x_n - x)\} \ni 0$. In fact, if $\{\lim x_n\} \ni x$, there exists a sequence of neighbourhoods of x, $\{v_n(x)\}$, such that

 $v_n(x) = x + V_n, V_n \in \mathfrak{B}_{\alpha_n}, \alpha_n \uparrow \infty, v_n(x) \supseteq v_{n+1}(x), x_n \in v_n(x).$ This implies that $V_n \supseteq V_{n+1}$, and therefore $\{\lim (x_n - x)\} \ni 0$. The converse is also obvious.

Now, we set following three axioms concerning the relation between the linear operations and the ranks of neighbourhoods.

(1) There exists a non-negative function $\phi(\lambda, \mu)$, defined for $\lambda \ge 0$ and $\mu \ge 0$, such that $\lim_{\lambda,\mu\to\infty} \phi(\lambda,\mu) = \infty$, and the following holds; if $U \in \mathfrak{B}_l$, $V \in \mathfrak{B}_m$, $W \in \mathfrak{B}_n$, $n \le \phi(l, m)$, and $U + V \subseteq W$, then, there is an $n^* \ge \phi(l, m)$, and a $W^* \in \mathfrak{B}_{n^*}$ such that $U + V \subseteq W^* \subseteq W$.

(2) There exists a non-negative function $\psi(\lambda, \mu)$, defined for $\lambda \ge 0$ and $\mu \ge 1$ such that $\lim_{\lambda \to \infty} \psi(\lambda, \mu) = \infty$ for each fixed μ , and the following holds; let α be a scalar with $|\alpha| \ge 1$. If $U \in \mathfrak{B}_m$, $V \in \mathfrak{B}_n$, $\alpha U \subseteq V$, and $n \le \psi(m, |\alpha|)$, then there is an $n^* \ge \psi(m, |\alpha|)$ and a $V^* \in \mathfrak{B}_{n^*}$ such that $\alpha U \subseteq V^* \subseteq V$.

(3) Let $U \in \mathfrak{V}$ and $x \in U$. Then for any n, there is an $m \ge n$, $a \ V \in \mathfrak{V}_m$ and some positive ρ such that $\rho x \in V \subseteq U$.

Moreover, we assume that every V in \mathfrak{B} is circled (i.e. if $x \in V$ and $|\alpha| \leq 1$, then $\alpha x \in V$).

When E satisfies all these axioms, we can assert that

I. if $\{\lim x_n\} \ni x$ and $\{\lim y_n\} \ni y$, then $\{\lim (x_n + y_n)\} \ni x + y$.

II. if $\{\lim x_n\} \ni x$, then for any scalar λ , $\{\lim \lambda x_n\} \ni \lambda x$.

III. if $\lim \lambda_n = \lambda$ (where λ_n, λ are scalars), then for any x in E, $\{\lim \lambda_n x\} \ni \lambda x$.

I. means the continuity of addition. II. and III. mean the continuity (more precisely, the separate continuity) of scalar multiplication.

Proof. Since $\{\lim x_n\} \ni x$ if and only if $\{\lim (x_n - x)\} \ni 0$, it suffices to show that, respectively,

I'. if $\{\lim x_n\} \ni 0$, and $\{\lim y_n\} \ni 0$, then $\{\lim (x_n + y_n)\} \ni 0$.

II'. if $\{\lim x_n\} \ni 0$, then for any λ , $\{\lim \lambda x_n\} \ni 0$.

III'. if $\lim \lambda_n = 0$, then for any x, $\{\lim \lambda_n x\} \ni 0$.

Proof of I'. From the hypothesis, there exist two sequences of neighbourhoods of 0, $\{U_n\}$, $\{V_n\}$, such that

$$U_n \in \mathfrak{B}_{\alpha_n}, \ U_n \supseteq U_{n+1}, \ \alpha_n \uparrow \infty, \ x_n \in U_n (n=1, 2, \cdots,)$$
$$V_n \in \mathfrak{B}_{\beta_n}, \ V_n \supseteq V_{n+1}, \ \beta_n \uparrow \infty, \ y_n \in V_n (n=1, 2, \cdots,)$$

Taking U_1 , V_1 , E, respectively, as U, V, W, and applying (1), we get an integer $\gamma_1^* \ge \phi(\alpha_1, \beta_1)$ and a $W_1^* \in \mathfrak{B}_{r_1^*}$ with $U_1 + V_1 \subseteq W_1^*$. Then, clearly, $x_n + y_n \in W_1^*$ for any n. Since $\lim_{n \to \infty} \phi(\alpha_n, \beta_n) = \infty$, we can choose an $n_1 > 1$, such that $\phi(\alpha_{n_1}, \beta_{n_1}) > \gamma_1^*$. As $U_{n_1} + V_{n_1} \subseteq U_1 + V_1$ $\subseteq W_1^*$, we can apply again axiom (1) to U_{n_1} , V_{n_1} , W_1^* , and find a $\gamma_2^* \ge \phi(\alpha_{n_1}, \beta_{n_1})$ and a $W_2^* \in \mathfrak{B}_{\gamma_2^*}$ with $U_{n_1} + V_{n_1} \subseteq W_2^* \subseteq W_1^*$. It is clear that $\gamma_2^* > \gamma_1^*$ and $x_n + y_n \in W_2^*$ for $n \ge n_1$.

Continuing this process, we obtain sequences of integers, $\{n_i\}$, $\{\gamma_i^*\}$, and a sequence of sets $\{W_i^*\}$ such that $n_i < n_{i+1}, \gamma_i^* < \gamma_{i+1}^*$; $W_i^* \in \mathfrak{B}_{r_i^*}, W_i^* \supseteq W_{i+1}^*$, and $x_n + y_n \in W_i^*$ when $n_{i-1} \le n(i=1, 2, \cdots,)$, where $n_0 = 1$. Now, put $\gamma_n = \gamma_i^*, W_n = W_i^*$ when $n_{i-1} \le n < n_i (i=1, 2, \cdots,)$. Then, $W_n \in \mathfrak{B}_{r_n}, W_n \supseteq W_{n+1}, \gamma_n \uparrow \infty, x_n + y_n \in W_n (n=1, 2, \cdots,)$. This means that $\{\lim (x_n + y_n)\} \ni 0$.

Proof of II'. From the hypothesis, we have a sequence $\{U_n\}$ such that

 $U_n \in \mathfrak{B}_{\alpha_n}, U_n \supseteq U_{n+1}, \alpha_n \uparrow \infty, x_n \in U_n.$

If $|\lambda| \leq 1$, then $\lambda x_n \in U_n$ (because U_n is circled); therefore, we see at once $\{\lim \lambda x_n\} \ni 0$. Now, suppose $|\lambda| > 1$. Applying axiom (2) to U_1, E, λ , there is a β_1^* and a $V_1^* \in \mathfrak{B}_{\beta_1^*}$ with $\lambda U_1 \subseteq V_1^*$. Since $\lim_{n \to \infty} \psi(\alpha_n, |\lambda|) = \infty$, we can choose an $n_1 > 1$ such that $\psi(\alpha_{n_1}, |\lambda|) > \beta_1^*$. Applying again axiom (2) to U_{n_1}, V_1^* , and λ , there exist a $\beta_2^* \geq \psi(\alpha_{n_1}, |\lambda|)$ and a $V_2^* \in \mathfrak{B}_{\beta_2^*}$ with $\lambda U_{n_1} \subseteq V_2^* \subseteq V_1^*$.

Continuing this process, we obtain sequences $\{n_i\}, \{\beta_i^*\}, \{V_i^*\}$ such that

$$\begin{array}{l} n_i < n_{i+1}, \ \beta_i^* < \beta_{i+1}^*; \ V_i^* \in \mathfrak{B}_{\beta_i^*}, \ V_i^* \supseteq V_{i+1}^*, \\ \text{and} \quad \lambda x_n \in V_i^* \quad \text{for} \ n \ge n_{i-1}. \end{array}$$

Putting $\beta_n = \beta_i^*$, $V_n = V_i^*$ for $n_{i-1} \le n < n_i (i = 1, 2, \dots,)$ we have $V_n \in \mathfrak{B}_{\beta_n}$, $V_n \supseteq V_{n+1}$, $\beta_n \uparrow \infty$, $\lambda x_n \in V_n$; namely, $\{\lim \lambda x_n\} \ni 0$.

No. 7]

M. WASHIHARA

Proof of III'. First, by the axiom (3) (taking E as U, and 1 as n), there is an $\alpha_1 \ge 1$, a $U_1 \in \mathfrak{B}_{\alpha_1}$, and an $\varepsilon_1 > 0$ such that $\varepsilon_1 x \in U_1$.

Next, applying again (3) to U_1 , $\varepsilon_1 x$, $\alpha_1 + 1$, we can find an $\alpha_2 > \alpha_1$, $U_2 \in \mathfrak{B}_{\alpha_2}$, and an $\varepsilon_2 > 0$ with $\varepsilon_2 \varepsilon_1 x \in U_2 \subseteq U_1$. Thus, we get sequences $\{\alpha_i\}, \{U_i\}, \{\varepsilon_i\}$ such that

 $\alpha_i < \alpha_{i+1}, U \in \mathfrak{B}_{\alpha_i}, U_i \supseteq U_{i+1}, \text{ and } \varepsilon_1 \varepsilon_2 \cdots \varepsilon_i x \in U_i.$

As $\lim \lambda_n = 0$, we can choose an increasing sequence of integers $\{n_i\}$ which satisfies that $|\lambda_n| \leq \varepsilon_1 \varepsilon_2 \cdots \varepsilon_i$ for $n \geq n_i$. Hence, $\lambda_n x \in U_i$ for $n \geq n_i$.

Put $\beta_n = \alpha_i$, $V_n = U_i$ when $n_i \le n < n_{i+1}$ $(i=0,1,2,\dots)$ where $n_0=1$, $\alpha_0=0$, $U_0=E$. Then we have

 $V_n \in \mathfrak{B}_{\beta_n}, V_n \supseteq V_{n+1}, \beta_n \uparrow \infty, \lambda_n x \in V_n$; that is, $\{\lim \lambda_n x\} \ni 0$. This completes our proof.

When the space E satisfies the condition

(*) if $U \in \mathfrak{B}_l$, $V \in \mathfrak{B}_m$, then $U \cap V \in \mathfrak{B}_n$, where $n \ge \max(l, m)$, axioms (1), (2), (3) can be replaced by simpler ones, (1'), (2'), (3'):¹

(1') there exists a function $\phi(\lambda, \mu)$ such as ϕ in (1), and the following holds; for $U \in \mathfrak{B}_l$, $V \in \mathfrak{B}_m$, there is an $n \ge \phi(l, m)$, and a $W \in \mathfrak{B}_n$ such that $U + V \subseteq W$.

(2') there exists a function $\psi(\lambda, \mu)$ such as ψ in (2), and the following holds; for $U \in \mathfrak{B}_m$, and for a scalar α with $|\alpha| \ge 1$, there is an $n \ge \psi(m, |\alpha|)$ and a $V \in \mathfrak{B}_m$ such that $\alpha U \subseteq V$.

(3') for any integer n, and for any x in E, there is an $m \ge n$, a $V \in \mathfrak{V}_m$ and a $\rho > 0$ such that $\rho x \in V$.

As is easily seen, (1'), (2'), (3') are the consequences of (1), (2), (3), respectively. On the other hand, if (*) is satisfied, (1), (2), (3) follow from (1'), (2'), (3'), respectively. For example, suppose (1'), and let $U \in \mathfrak{B}_l$, $V \in \mathfrak{B}_m$, $W \in \mathfrak{B}_n$, $n \leq \phi(l, m)$ and $U + V \subseteq W$. By (1'), there is an $n' \geq \phi(l, m)$ and a W' such that $U + V \subseteq W'$. On account of (*), $W \cap W' \in \mathfrak{B}_{n^*}$, where $n^* \geq \max(n, n')$, and obviously, U + V $\subseteq W \cap W' \subseteq W$.

Examples. 1. Let \mathcal{O} be a countably normed space [2]; i.e. a linear space where a sequence of compatible norms $\{|| \quad ||_n\}_{n=1,2,...}$ is given, and convergence is defined as convergence with respect to each norm. These norms are assumed monotonously increasing.

Now, let $v(n; 0) = \left\{ \varphi \in \mathcal{Q} \mid ||\varphi||_n < \frac{1}{n} \right\}$ and let \mathfrak{B}_n consist of only

one set v(n; 0).²⁾ Evidently, (A) holds. If $m \ge n$, then $v(n; 0) \supseteq v(m; 0)$ and therefore (*) is satisfied. It is easily verified that (1'), (2'), (3')

¹⁾ Moreover, axiom (B) is the direct consequence of (*), and if none of \mathfrak{B}_n is empty, axiom (a) follows from (*).

²⁾ We put $\mathfrak{B}_0 = \{ \phi \}$. In examples 2, 3, too, we take the whole space as an element of \mathfrak{B}_0 .

are fulfilled, if we put

$$\phi(\lambda, \mu) = \min\left(\left[\frac{\lambda}{2}\right], \left[\frac{\mu}{2}\right]\right), \quad \psi(\lambda, \mu) = \left[\frac{\lambda}{\mu}\right].$$

Thus Φ satisfies all of our axioms.

Convergence of a sequence in Φ as a ranked space is equivalent to the usual convergence; we have $\{\lim \varphi_i\} \ni 0$, if and only if $||\varphi_i||_n \rightarrow 0$ for every *n*. In fact, if $\{\lim \varphi_i\} \ni 0$, there is a sequence $\{V_i\}$ such that

$$V_i \in \mathfrak{V}_{lpha_i}, \; V_i {\supseteq} \; V_{i+1}, \, lpha_i \uparrow \infty, \, arphi_i \in V_i.$$

For given n and for given $\varepsilon > 0$, we can find some i_0 such that,

if
$$i \ge i_0$$
, then $\alpha_i \ge n$ and $\frac{1}{\alpha_i} < \varepsilon$

Since $V_{i_0} \in \mathfrak{B}_{\alpha_{i_0}}, V = v(\alpha_{i_0}; 0)$. When $i \ge i_0, \varphi_i \in V_{i_0}$, consequently, $||\varphi_i||_n \le ||\varphi_i||_n \le ||\varphi_i||_{\alpha_{i_0}} < \frac{1}{\alpha_{i_0}} < \varepsilon$. This means that $||\varphi_i||_n \to 0$ for every n.

Conversely, suppose that $||\varphi_i||_n \rightarrow 0$ for any *n*. Then we can choose a sequence of integers $\{i_n\}$ such that

$$i_n < i_{n+1}; || \varphi_i ||_n < \frac{1}{n}$$
 for $i \ge i_n (n=0, 1, 2, \dots,).$

Putting $\alpha_i = n$, $V_i = v(n; 0)$, when $i_n \le i \le i_{n+1}$ $(n = 0, 1, 2, \dots)$, we have $V_i \in \mathfrak{B}_{\alpha_i}$, $V_i \supseteq V_{i+1}$, $\alpha_i \uparrow \infty$, $\varphi_i \in V_i$; i.e. { $\lim \varphi_i$ } $\ni 0$.

This completes our proof.

2. L. Schwartz defined the space \mathcal{D} [3], consisting of all infinitely differentiable functions with compact carrier, and convergence in it. Now, let

$$v(n, K; 0) = \left\{ \varphi \in \mathcal{D} \mid \text{car. } \varphi \subseteq [-K, K], \max_{0 \le j \le n-1} \sup_{x} \mid \varphi^{(j)}(x) \mid < \frac{1}{n} \right\}$$

and let \mathfrak{V}_n be the collection of all v(n, K; 0), where K is arbitrary positive number.

Obviously (A) holds. Moreover, it is easily seen that, if $n \le m$ and $K \le L$, then $v(m, K; 0) \subseteq v(n, L; 0)$, and that $v(n_1, K_1; 0) \cap v(n_2, K_2; 0) = v(n, K; 0)$, where $n = \max(n_1, n_2)$, $K = \min(K_1, K_2)$. Hence (*) holds. Similarly as for \mathcal{P} , we can see that (1'), (2'), (3') are also fulfilled, putting $\mu \ \phi(\lambda, \mu) = \min(\left[\frac{\lambda}{2}\right], \left[\frac{\mu}{2}\right])$ and $\psi(\lambda, \mu) = \left[\frac{\lambda}{\mu}\right]$.

The convergence in \mathcal{D} as a ranked space is equivalent to that L. Schwartz defined; we have $\{\lim \varphi_i\} \ni 0$ if and only if there exists some K such that car. $\varphi_i \subseteq [-K, K]$ for every i, and for each fixed $n, \varphi_i^{(n)}(x)$ (and $\varphi_i(x)$ itself) converges to 0 uniformly in [-K, K].

No. 7]

M. WASHIHARA

of \mathscr{O} with respect to the norm $|| \quad ||_n$; in other words, for any f in \mathscr{O}' , there is some p such that $||f||'_p < \infty$ (where $||f||'_p = \sup_{||\varphi||_p \le 1} |f(\varphi)|$). Moreover, since $|| \quad ||_n \le || \quad ||_{n+1}$, $|| \quad ||'_n \ge || \quad ||'_{n+1}$.

Now, let $v(n, p; 0) = \left\{ f \in \mathcal{Q}'_p \mid || f ||'_p < \frac{1}{n} \right\}$, and let \mathfrak{B}_n be the collection of $v(n, p; 0), p = 1, 2, \cdots$. It is clear that, if $n \le m$ and $p \le q$, then $v(m, p; 0) \subseteq v(n, q; 0)$. Furthermore, we remark that, if $v(m, p; 0) \subseteq v(n, q; 0)$, then necessarily $p \le q$. In fact, suppose p > q. Then $\mathcal{Q}'_p \supseteq \mathcal{Q}'_q$. Since we can assume that any two norms $|| \quad ||_p$ and $|| \quad ||_q$ are not equivalent, and therefore $|| \quad ||'_p$ and $|| \quad ||'_q$ are not equivalent, we have $\mathcal{Q}'_p \supseteq \mathcal{Q}'_q$. On the other hand, from $v(m, p; 0) \subseteq v(n, q; 0)$, $\mathcal{Q}'_p \subseteq \mathcal{Q}'_q$ (because $\mathcal{Q}'_p = \bigcup_{m=1}^{\infty} v(m, p; 0)$ and $\mathcal{Q}'_q = \bigcup_{n=1}^{\infty} v(n, q; 0)$). This is a contradiction.

It is easily verified that (A), (B), (a) holds.

Let us show that (1) is satisfied, putting $\phi(\lambda, \mu) = \min\left(\left\lfloor \frac{\lambda}{2} \right\rfloor, \left\lfloor \frac{\mu}{2} \right\rfloor\right)$.

Let U = v(l, p; 0), V = v(m, q; 0), W = v(n, r; 0), and suppose

 $U+V\subseteq W, n\leq \min\left(\left[\frac{l}{2}\right],\left[\frac{m}{2}\right]\right).$

Then $U \subseteq W$, $V \subseteq W$, and by the remark above, we have $p \leq r, q \leq r$.

Putting $r^* = \max(p, q), n^* = \min(\left[\frac{l}{2}\right], \left[\frac{m}{2}\right])$, and $W^* = v(n^*, r^*; 0)$, we have $W^* \subseteq W$, because of $n^* \ge n$ and $r^* \le r$. Moreover, let $f \in U$ and $g \in V$, then

$$||f+g||'_{r^*} \le ||f||'_{r^*} + ||g||'_{r^*} \ge ||f||'_p + ||g||'_q \le \frac{1}{l} + \frac{1}{m} \le \frac{1}{n}$$

Hence $U + V \subseteq W$.

Similarly, we can show that (2) and (3) also hold.

The convergence in Φ' as a ranked space is equivalent to the strong convergence; we have $\{\lim f_i\} \ni 0$ if and only if, there exists some p with $f_i \in \Phi'_p$ for every i, and $||f_i||_p \to 0$. In fact, if $\{\lim f_i\} \ni 0$, there is a sequence $\{V_i\}$, such that

 $V_i \in \mathfrak{B}_{\alpha_i}, \ V_i \supseteq V_{i+1}, \ \alpha_i \uparrow \infty, \ f_i \in V_i.$

Let $V_i = v(\alpha_i, p_i; 0)$. From $V_i \supseteq V_{i+1}$, we have $p_i \ge p_{i+1}$. Therefore, for every $i, ||f_i||'_{p_1} \le ||f_i||_{p_i} < \frac{1}{\alpha_i}$. This means that $f_i \in \Phi_{p_1}$, and $||f_i||'_{p_1} \rightarrow 0$. Conversely, if $||f_i||'_p \rightarrow 0$ for some p, then, we can show that $\{\lim f_i\} \ni 0$, in the similar way as for the convergence in Φ . No. 7]

References

- [1] K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).
- [2] I. M. Gelfand and G. E. Shilov: Generalized functions, vol. 2. Spaces of fundamental functions and generalized functions. Moscow (1958).
- [3] L. Schwartz: Théorie des distributions. Act. Sci. et Ind., Nr. 1091, 1092 (1950-1951).