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130 On Ranked Spaces and Linearity

By Masako WASHIHARA
Kyoto Industrial University

(Comm. by Kinjir6 KvNuc,I, .z.A., Sept. 12, 1967)

Let E be a linear space over the real or complex numbers,
where defined families of subsets (n=0, 1, 2,...,) which satisfy
following conditions:

(A) For every V in , 0e V (where !8-U ).

(B) For U, V in there is a W in such that W_ UV V.
(a) For any U in and for any integer n, there is an m such

that m>_.n, and a V in such that V___U.
(b) Eel0.

For each point x in E, we shall call x/V a neighbourhood of
x with rank n, when V e.,. Then E is a ranked space 1 with
indicator w0. Furthermore, for any sequence {x} in E, we have
{lim x} x 1 if and only if {lim (x-x)} 0. In fact, if {lim x} - x,
there exists a sequence of neighbourhoods of x, {v(x)}, such that

x + e e
This implies that V___ V+, and therefore {lim(x-x)}0. The
converse is also obvious.

Now, we set following three axioms concerning the relation
between the linear operations and the ranks of neighbourhoods.

1 There exists a non-negative function (,/2), defined for
>_0 and /2>__0, such that lim(,/)=c, and the following holds;

if Ue , Ve, We, n<_(1, m), and U+ V___ W, then, there is
an n*>_(/, m), and a W* e . such that U/ V___ W* W.

(2) There exists a non-negative function (,/), defined for
2>_0 and /2:>1 such that lim (, )=c for each fixed /2, and the

following holds; let c be a scalar with Icily1. If U e, Ve ,
cU_ V, and n_(m, [cl), then there is an n*>__(m, c]) and a

V* e . such that c U___ V*
___

V.
(3) Let Ue and xeU. Then for any n, there is an m>__n,

a V e and some positive p such that px e V U.
Moreover, we assume that every V in !8 is circled (i.e. if x e V

and c [___ 1, then cx e V).
When E satisfies all these axioms, we can assert that

I. if {lim x} x and {lim y} y, then {lim (x+y)} x + y.

II. if {lim x} x, then for any scalar , {lim x} x.
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III. if lim-2 (where 2,, 2 are scalars), then for any x in E,
{lim 2x} 2x.

I. means the continuity of addition. II. and III. mean the
continuity (more precisely, the separate continuity) of scalar multi-
plication.

Proof. Since {lim x} x if and only if {lim (x-x)} 0, it
suffices to show that, respectively,

I’. if {lim x} 0, and {lira y} 0, then {lim (x /y)} 0.
II’. if {lim } 0, then for any , {lim 2x} e 0.

III’. if lim -0, then for any , {lim} 0.
Proof ot I’. From the hypothesis, there exist two sequences

of neighbourhoods of 0, {U}, {V}, such that
U e ,, U_ U+, v oo, x e U(n-1, 2, ,)
v e, v_ v/,, oo, y e V(n-, 2, ,)

Taking U, V, E, respectively, as U, V, W, and applying (1), we get
an integer %* :>(a,/) and a W* e r with U+V W*. Then,
clearly, x+y e W* for any n. Since lim (a., .)- oo, we can

choose an n> 1, such that (a,/)>77. As U+ V_ U+ V_
W*, we can apply again axiom (1) to U, V, W*, and find a

%* >__(a,/) and a W* e . with U,_+ V_,W*

_
W*. It is clear

that %* >%* and x+y e W* for n

_
n.

Continuing this process, we obtain sequences of integers, {n},
{/$}, and a sequence of sets {W*} such that n<n+,7$< *7i+1;

W* e, W*
_
W+,* and x+y. e W* when n__< n(i 1, 2, ,),

where no-1. Now, put 7-7’, W.- W* when n__n<n(i-1,2,...,).
Then, W e 3., W_ W+, oo, x+y e W(n-1, 2, ...,). This
means that {lira (x. + y)} 0.

Proof of II’. From the hypothesis, we have a sequence {U.}
such that

U.e., U._U.+,a. T ,x.e U..
I 12 ]<_1, then 2x. e U. (because U. is circled); therefore, we see
at once {lira 2x.} 0. Now, suppose 2 [ 1. Applying axiom (2) to
U,E, 2, there is a /3? and a V*e3 with 2UV*. Sinee
lim (a., 12 ])- c, we can choose an n> 1 such that (a., 2 ]) >/3?.
Applying again axiom (2) to U,, V*, and 2, there exist a
/3* >_(a., 2 ]) and a V* e 3 with 2 U. V*

_
V*.

Continuing this process, we obtain sequences {n}, {/3’}, {V*}
such that

n<n+, ’<,+*; V? e 3, V?
_

V,+?,
and 2x. e V? for n>__n_.

Putting /3.-/3’, V. V* for n__n<n(i- 1, 2, ,) we have
V, e 3., V, V.+,/3. T c, 2x. e V.; namely, {lim 2z.} o.
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Proof of III’. First, by the axiom (3) (taking E as U, and 1
as n), there is an t.>l, a U e _,, and an s>0 such that ex e U.

Next, applying again (3) to U, ex, t_ + 1, we can find an

U e 3, and an >0 with eex e U.___ U. Thus, we get sequences
{t}, {U}, {} such that

tt+, Ue 3, U_ U+, and .... ex e U.
As lim ,-0, we can choose an increasing sequence of integers {n}
which satisfies that 12 l<ee.... for n>n. Hence, x e U for
n>n.

Put fi-t, V- U when n<n<n+(i-0,1,2,...,) where n0-1,
t0- 0, U0- E. Then we have

V e ., V_ V+, fi oo, x e V; that is, {lim x} 0.
This completes our proof.

When the space E satisfies the condition
(.) if Ue, Ve, then UVe, where n>_max. (/, m),

axioms (1), (2), (3) can be replaced by simpler ones, (1’), (2’), (3’):)

(1’) there exists a function (2,/) such as in (1), and the
following holds; for Ue, Ve3, there is an n>_(l,m), and a

We such that U+VW.
(2’) there exists a function (2,/) such as + in (2), and the

following holds; for Ue, and for a scalar t with tl>l, there
is an n>(m, o and a V e!3 such that tU_ V.

(3’) for any integer n, and for any x in E, there is an re>n,
a Ve!3 and a p>0 such that px e V.

As is easily seen, (1’), (2’), (3’) are the consequences of (1), (2),
(3), respectively. On the other hand, if (.) is satisfied, (1), (2), (3)
follow from (1’), (2’), (3’), respectively. For example, suppose (1’),
and let Ue, Ve3, We,,n<(1, m) and U+V_W. By (1’),
there is an n’>(1, m) and a W’ such that U/ V_ W’. On account
of (.), W V W’ e ,., where n*>max. (n, n’), and obviously, U+ V_
W W’_ W.
Examples. 1. Let ( be a countably normed space [2; i.e. a

linear space where a sequence of compatible norms {11 II}--,. is
given, and convergence is defined as convergence with respect to
each norm. These norms are assumed monotonously increasing.

{ 1} and let !3 consist of onlyNow, let v(n; 0)- e 1]1 I1<-
one set v(n; 0).) Evidently, (A) holds. If re>n, then v(n; 0)v(m; 0)
and therefore (.) is satisfied. It is easily verified that (1’), (2’), (3’)

1) Moreover, axiom (B) is the direct consequence of (.), and if none of is
empty, axiom (a) follows from (,).

2) We put 0={}. In examples 2, 3, too, we take the whole space as an
element of 0.
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are fulfilled, if we put

(2, ff)-min. (I-]’ E-])’ @(2,

Thus satisfies all of our axioms.
Convergence of a sequence in as a ranked space is equivalent

to the usual convergence; we have {lim } 0, if and only if ]]
0 for every n. In fact, if {lim}0, there is a sequence {V}
such that

For given n and for given e>0, we can find some i0 such that,

if i i0, then n and < e

Since V e 0, V-v(0; 0). When i i0, e V0, consequently,

]]o< <" This means that 0 for every n.

Conversely, suppose that [[ [+0 for any n. Then we can choose
a sequence of integers {i} such that

i.<i=+,; {[ ]< for ii(n-O, 1, 2, ...,).
n

Putting -n, V=v(n; 0), when i,i<i+,(n-O, 1, 2, ...,), we have
V e, V V+,, T , e V; i.e. {lim } 0.

This completes our proof.
2. L. Schwartz defined the space [3], consisting of all infinitely

differentiable functions with compact carrier, and convergence in it.
Now, let

v(n, K; 0)--{ eicar. cE-g, g, max. sup. I(’)(x)]< 1

and le be he collection of all (, K; 0), where K is arbitrary
positive number.

0bviously (A) holds. Moreover, i is easily seen ha, if
and KL, then (m, K; 0)(, L; 0), and ha (, K; 0) (, K; 0)
=(, K; 0), where -max. (, ), K=min. (K, K). Hence (.)
holds. Similarly as for #, we can see tha (1’), (2’), (8’) are also

fulfilled, puing (2, .)-min. (, )and (2, )-.
he convergence in as a ranked saee is equivalent to that

8ehwart defined; we have {lim } 0 if and only if there exists some
K sueh that ear. I-K, K for every i, and for each fixed ,
(and () itself) converges to 0 uniformly in I-K, K.

g. et be a eountably normed saee, and ’ be its dual (i.e.
linear space consisting of all continuous linear funetionals on
It is known that O’ is the union of where O is the eomletion
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of P with respect to the norm II II,; in other words, for any f in
P’, there is some p such that II f I1< c (where II f II-sup. f()
Moreover, since ]1 I’l_]l I1+, ]] ll

Now, let v(n, p; 0)-{fe. ]If --}, and let . be the col-

lection of v(n, p; 0), p-1, 2, .... It is clear that, if ngm and pgq,
then v(m, p; 0)v(n, q; 0). Furthermore, we remark that, if v(m, p; O)
v(n, q; 0), then necessarily pq. In fact, suppose p>q. Then

’. Since we can assume that any two norms ]] }} and
are not equivalent, and therefore ]] ]] and ]] ]]’ are not equivalent,
we have ’. On the other hand, from v(m, p; 0)v(n, q; 0),

’q(because -=5v(m, p; 0) and ’q-=v(n, q; 0)). This is a

contradiction.
It is easily verified that (A), (B), (a) holds.

Let us show that (1)is satisfied, putting 0(2, )-min. (J, [J).
Let U-v(1, p; 0), V=v(m, q; 0), W-v(n, r; 0), and suppose

UeVW,nmin.

Then U W, V W, and by the remark above, we have pr, q.

we hve W* W, because o #*# and *. Moreover, let f U
and ge V, then

i+2<i]] f +g] ’.s f .+]]g]]’..] f +]g]]’sE
Hence U+ V W.

Similarly, we can show that (2) and (3) also hold.
The aonvergence in ’ as ranked sae is equivalent to te

stron convergence; we hve {lira f} 0 i nd only if, there exists
some p with f e @ for every i, and ]] f 0. In fact, if {lm f} 0,
there is a sequence {V}, such that

Let V-v(, p; 0). From V V+, we have pp+. Therefore,

for every i, f, f <2. This means that f e , and

] f ]]0. Conversely, if ] f ]]0 for some p, then, we can show
that lim f} 0, in the similar wy as or the convergence in
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