No. 7]

129. Locally Symmetric K-Contact Riemannian Manifolds

By Shûkichi TANNO

Mathematical Institute, Tôhoku University, Sendai, Japan

(Comm. by Zyoiti SUETUNA, M.J.A., Sept. 12, 1967)

§ 1. Introduction. Let M be a contact Riemannian manifold with a contact form η , the associated vector field ξ , a (1, 1)-tensor ϕ and the associated Riemannian metric g:

$$egin{aligned} \phi_{j}^{i}\xi^{j}\!=\!0, & \eta_{i}\phi_{j}^{i}\!=\!0, & \eta_{i}\xi^{i}\!=\!1, \ \phi_{j}^{i}\phi_{k}^{j}\!=\!-\delta_{k}^{i}\!+\!\xi^{i}\eta_{k}, & g_{ij}\xi^{j}\!=\!\eta_{i}, \ g_{ij}\phi_{r}^{i}\phi_{s}^{j}\!=\!g_{rs}\!-\!\eta_{r}\eta_{s}. \end{aligned}$$

If ξ is a Killing vector field with respect to g, M is called a Kcontact Riemannian manifold, and then ξ is an infinitesimal automorphism of this structure. And we have

 $(1.1) \qquad \qquad \nabla_i \xi^i = -\phi_i^i,$

(1.2)
$$R_{jk}\xi^{k} = (m-1)\eta_{j}, \quad m = \dim M,$$

(1.3) $\eta_r R^r{}_{jks}\xi^s = g_{jk} - \eta_j \eta_k.$

Further if the following relation

(1.4) $\eta_r R^r{}_{jkl} = g_{jk} \eta_l - g_{jl} \eta_k$

is satisfied, M is called a Sasakian manifold ([2]).

§ 2. Statement of results. M is said locally symmetric if we have $\nabla_{k}R^{i}{}_{jkl}=0$. In this paper first in § 3 we prove the following

Theorem 1. Any locally symmetric K-contact Riemannian manifold is Sasakian and has constant curvature 1.

As an immediate consequence we have

Theorem 2. Any complete, simply connected and locally symmetric K-contact Riemannian manifold is globally isometric with a unit sphere.

Any compact semi-simple Lie group G has the positive definite Riemannian metric defined by the Killing form, which is locally symmetric and is not of constant curvature, provided dim G>3(cf. [4], p. 122). Therefore we get

Corollary 3. A compact semi-simple Lie group G (dim G>3) with the usual metric can not be a K-contact Riemannian manifold.

Remark 4. With regard to this Corollary in [1] (p. 729) it was shown that, if G is a semi-simple Lie group on which a left G-invariant contact form η is defined, then G is 3-dimensional and locally isomorphic with either O(3) or SL(2).

It is known that the homogeneous holonomy group of a Sasakian manifold is the full special orthogonal group ([6]). As for a K-contact Riemannian manifold, in § 4, we prove the following

Proposition 5. The restricted homogeneous holonomy group of a K-contact Riemannian manifold is irreducible.

Then we have ([5])

Corollary 6. If the Ricci tensor field is parallel in a K-contact Riemannian manifold, then it is an Einstein space.

Since a 3-dimensional Einstein space is of constant curvature, we have

Proposition 7. If a complete, simply connected K-contact Riemannian manifold M is 3-dimensional and the Ricci tensor field is parallel, then M is globally isometric with a unit sphere.

In [5] we have proved the following

Lemma 8. Every conformally flat K-contact Riemannian manifold (dim M>3) is of constant curvature.

In § 5, we prove

Lemma 9. If dim M=3 and M is a conformally flat K-contact Riemannian manifold, then it is of constant curvature.

Then we get

Theorem 10. If M is a complete, simply connected and conformally flat K-contact Riemannian manifold, then M is globally isometric with a unit sphere.

Theorem 1, Corollary 3, Corollary 6, and Lemma 8 are generalizations of the results on Sasakian manifolds obtained by M. Okumura [3].

 \S 3. Proof of Theorem 1. Differentiating (1.3) covariantly, we have

(3.1) $\phi_{hr}R^{r}{}_{jks}\xi^{s} - \eta_{r}R^{r}{}_{jks}\phi^{s}{}_{h} = -\phi_{hj}\eta_{k} - \phi_{hk}\eta_{j}.$ Transvecting (3.1) with ϕ^{h}_{i} we get (3.2) $R_{ijks}\xi^{s} + R_{ikjs}\xi^{s} = 2g_{jk}\eta_{i} - g_{ji}\eta_{k} - g_{ik}\eta_{j}.$ We operate \mathcal{F}_{p} again, and get (3.3) $R_{ijks}\phi^{s}{}_{p} + R_{ikjs}\phi^{s}{}_{p} = 2g_{jk}\phi_{ip} - g_{ij}\phi_{kp} - g_{ik}\phi_{jp}.$ Transvecting (3.3) with ϕ^{p}_{l} and using (3.2) we get (3.4) $R_{ijkl} + R_{ikjl} = 2g_{jk}g_{il} - g_{ij}g_{kl} - g_{ikgjl}.$ Now we take an arbitrary point x of M and arbitrary orthonormal

tangent vectors X and Y at x. If we contract (3.4) with $X^i Y^j X^k Y^l$, we have

 $(3.5) -R_{ijkl}X^iY^jX^kY^l = 1.$

This means that the sectional curvature is constant and equal to 1.

§ 4. Proof of Proposition 5. Suppose that the restricted homogeneous holonomy group ψ is reducible, then at any point x we have the direct decomposition of the tangent space M_x as

No. 7] Locally Symmetric K-Contact Riemannian Manifolds

(4.1) $M_x = L_x + N_x$ such that $\psi(x)L_x \subset L_x$ and $\psi(x)N_x \subset N_x$. Let $X \in L_x$ and $Y \in N_x$, then we have $R(X, \xi)Y=0$, and by (1.3) we have $g(X, Y) - \eta(X)\eta(Y)=0$. Since g(X, Y)=0, we get $\eta(X)\eta(Y)=0$. Assume that $\eta(X) \neq 0$, then for any $Y \in N_x$, $\eta(Y)=0$ holds and this implies $\xi \in L_x$. By (1.3) again, any $Y \in N_x$ satisfies $g(Y, Y) = \eta(Y)\eta(Y)=0$. That is $L_x = (0)$.

§ 5. Proof of Lemma 9. When dim M=3, M is conformally flat if and only if

(5.1) $C_{jkl} = \nabla_l R_{jk} - \nabla_k R_{jl} - (1/4)(g_{jk} \nabla_l S - g_{jl} \nabla_k S) = 0,$

where S is the scalar curvature. Since ξ is a Killing vector field, it leaves R_{jk} and S invariant:

(5.2) $L_{\xi}R_{jk} = \nabla_{l}R_{jk}\xi^{l} + R_{lk}\nabla_{j}\xi^{l} + R_{jl}\nabla_{k}\xi^{l} = 0,$

 $(5.3) L_{\xi}S = \xi^{l} \mathcal{V}_{l}S = 0.$

If we eliminate $\mathcal{V}_{l}R_{jk}$ from (5.1) and (5.2), using (1.2) and (5.3), we have

(5.4) $-(m-1)\phi_{jk} - R_{rk}\phi_j^r = (1/4)\eta_j \nabla_k S.$

Now we transvect (5.4) with ϕ_l^j , then we get $R_{kl} = (m-1)g_{kl}$. So M is an Einstein space, and of constant curvature.

References

- [1] W. M. Boothby and H. C. Wang: On contact manifolds. Ann. Math., 68, 721-734 (1958).
- [2] Y. Hatakeyama, Y. Ogawa, and S. Tanno: Some properties of manifolds with contact metric structure. Tôhoku Math. Jour., 15, 42-48 (1963).
- [3] M. Okumura: Some remarks on space with a certain contact structure. Tôhoku Math. Jour., **14**, 135-145 (1962).
- [4] T. Sumitomo: Projective and conformal transformations in compact Riemannian manifolds. Tensor (N.S.), 9, 113-135 (1959).
- [5] S. Tanno: Some transformations on manifolds with almost contact and contact metric structures. II. Tôhoku Math. Jour., 15, 322-331 (1963).
- [6] Y. Tashiro: On contact structure of hypersurfaces in complex manifolds.
 II. Tôhoku Math. Jour., 15, 167-175 (1963).