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163. On Extension of Almost Periodic Functions

By Shunsuke FUNAKOSI
(Comm. by Kinjir5 KUNU(I, M.J..., Oct. 12, 1967)

In this note, we shall prove an extension theorem of almost
periodic functions on a topological semifield. For the concept of
topological semifield, see 1 and 2.

Let E be an arbitrary topological semifield, E. a complete
topological semifield. We consider the set M of all bounded function
f: E-E.. For f, g e M, we define its distance by

p(f, g)- sub d(f(x), g(x))= sup f(X)--
E xE

where xt denotes the absolute value of x. As easily seen, p(f, g)
satisfies the well known axioms on a metric. Then M is a metric
space over a topological semifield E.. E. is complete, so M is complete.

Definition 1. A function f(x)(x e E) is called almost periodic,
if it is continuous on E, and if for every neighborhood U0,, (in E)
there exists a neighborhood U,+ (in E) containing at least one
element y=y(s) for which the relation d(f(x/y), f(x))e U, for all
x--U:,+ holds." Such an element y(e) is called an e-period of the
function f.

Then every almost periodic function is bounded on the topological
semifield and therefore belongs to the space M.

Definition 2. A set K of a metric space X over a topological
semifield is called e-net for the set M of the space, if for every
element f e M there exists an element f, e K such that p(f, f) e U0q,.

Proposition (Extension of Hausdorf[’s theorem). In order
that a set M in a metric space X over a topological semifield be compact,
it is necessary that for every >0 there exists a finite e-net for M.
If the space X is complete, then the condition is also sufficient.

Proof of necessity: We assume that M is compact. Let f be
an arbitrary element of M. If p(f, fi)e U,, for all f e M, then a
finite e-net exists. If, however, this is not the case, then there
exists an element ft. e M such that p(fi, f) e Uo,,. If for every element
f e M either p(f, f) e U,, or p(fi., f) e U,,, then we have found a
finite e-net. If, however, this does not hold, then there exists an
element f such that

(A, f3) e U,,, (f, f3) e U0q,.
Continuing this way, we obtain elements f,fi., ...,f for which
p(fi, f)e U, if i cj. There exist two possibilities. Either the

1) We put Uoq,,={xeE1]O<x(q)>e}, U,={xeElO<x(q)<_e}.



740 S. FUNAKOSI V_Vo]. 43,

procedure ceases after the kth step, i.e., for every f e M one of the
relation

p(f, f) e U,, i=1, 2, ..., k,
holds and the fi, f, ...,f form a finite e-net for M, or we can
continue indefinitely the present procedure. The latter, however,
cannot occur, since otherwise we would obtain an infinite sequence
{f} of elements such that p(fi, f)e U for ij, and neither this
sequence nor any of its subsequences would converge. This is a
contradiction to the hypothesis that M is compact.

Proof o sutciencv: We assume that the space X is complete
and that to every 0 there is a finite e-net for M. We choose a
null sequence {}. For every we construct a finite e-net [f:),
f2(n) ’(),..., for the set M. Then we choose an arbitrary infinite
subset ScM. Around every element fi(), f), ..., r() of the e-net
we place a closed sphere B such that p( f, g)e Ug. for every f,
g e B. Then every elements of S is contained in one of these spheres.
Since the number of the sphere is finite, there is at least one sphere
containing an infinite set of elements of S. We denote this subset
of S by S. Around every element f(), f(), ...,r()of the e-net we
place a closed sphere B: such that p( f, g)e Ug. for every f, g e B.
By the same reasoning as above, we obtain an infinite set ScS,
situated in one of the constructed spheres B.. Continuing this
procedure, we obtain a sequence of infinite subsets of S: SDS.D...
pSi, ..., where the subset S, is contained in a closed sphere B..

Now we choose an element f e S, an element f e S, different
from f an element f e S, different from f and f, and so on, and
we obtain a sequence of elements S={fi, f,..., f,...} which is a
Cauchy-sequence, f e S and f+ e S+ for every natural number p
implies

p(A/, A) e Uo,o as n-.
By hypothesis the space X is complete, so the sequence S

converges to an element f e X. This proves the compactness of the
set M.

Corollary. A set M of a complete metric space X over a
topological semifield is compact if and only if for every >0 there
exists a compact e-net for M.

Proof. Let K be a compact e/2-net for the set M. Applying
the Proposition to K, we find that there exists a finite e/2-net K0
for K. Then K0 is a finite e-net for M. For every element feM
there exists an element fie K such that p(f, f) U,. Further-
more, for every element fi e K there exists an element f e K0 such
that p(fi, f) e U,. Consequently, for every element f e M, there
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exists a element ft., such that
P(fl, f2) << P(f fi) / P( fi, f) e U,I,. / U,,I

_
U,,

i.e., K0 is a finite e-net for M. Since the space X is complete, we
conclude by proposition that M is compact.

Then we shall prove the following
Theorem. A set P of almost periodic functions is compact in

the sense of the metric of M if and only if
(1) the functions of the set P are uniformly bounded and equi-
continuous.
(2) for every neighborhood U, (in E), there exists a neighborhood
U,a+ (in E) containing an element h which is an 2-period for all
functions of the set P.

Proof of necessity/: The proof of (1) is analogous to the proof
of the corresponding assertion in the generalization of Ascoli-Arzela’s
theorem on the topological semifield E4. We consider condition (2).

Since P is compact, for every V>0, there exists a finite ]/3-net
for the set P. Let us denote these elements by fi, fi., ...,f.
Then, for every element f e P there exists an element fi(l__i___ n)
such that p(f, fi) e U,. There exists a number l > 0 such that every
neighborhood U,+ containing an element h which is an 2/3-period
for all fi, i-1, 2,..., n:

d(fi(x/ h), f(x)) e U for all x e E(i-1,2,..., n)
(The proof is analogous to one of the corresponding assertion on the
real number line oo < x< / oo which has shown by Bohr).
Since, on the other hand, {fi} is an ]/3-net for P, there exists for
every function f e P an fi such that
d(f(x+h), f(x))(d(f(x+h), fi(x+h))+d(f(x+h), f(x))

/d(f(x), f(x)) e U:,/3/ U,3U,c U,
for x e E. Therefore h is an 7j-period for all f e P and we complete
the necessity of (2).

Proof of suiicienc/: We assume that for a set P of almost
periodic function, (1) and (2) are fulfilled and choose a neighborhood
U, (in E.). Let l-1(2) be determined such that every neighborhood
U:,,+ has an 7]-period for all f e P. We associate with every f e P
a function f defined by

f(x), if x e
f(x)- if x e U,(+il(n-1, 2, 3,...,),

[f(x-r), Ix e U,(+l(n- -2, -3, .,),
where r is an ]-period for all f eP, and its period lies in the
neighborhood U,(+,. We denote the set of all f by P. By
condition (1), all functions f e P satisfy the conditions of the theorem
of Ascoli-Arzela (in the sense of extension) on the neighborhood
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U_i,i. Therfore P is compact in the sence of uniform convergence
on the neighborhood U_,. By x-r e U_i,i, a sequence of functions

f which converges uniformly on the neighborhood U_i,i converges
uniformly also on the entire topological semifield E by definition of
these functions. Consequently the set P is compact in the sense
of uniform convergence on the entire topological semifield E, i.e.,
in the sense of the metric of the space M. For arbitrary f e P and
the corresponding f e P,

d(f(x), f(x))-O if x e U_i,i
and

g(f(x), f(x))-g(f(x), f(x-r)),

if { e U,/+/(n- 1, 2, .,),
eU (n--2, 3,...).

Since r is an 7j-period for f, for an arbitrary x we have
g(f(x), f(x)) e U,.

Hence the compact set P forms an 7j-net for P in the space M.
By corollarty to Proposition, P is compact and therefore, we have
shown that the conditions (1) and (2) are sufficient.
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